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Abstract

We define a distance on the space of convex bodies in the n-dimensional Euclidean
space, up to translations and homotheties, which makes it isometric to a convex subset
of the infinite dimensional hyperbolic space. The ambient Lorentzian structure is an
extension of the intrinsic area form of convex bodies.

We deduce that the space of shapes of convex bodies (i.e. convex bodies up to
similarities) has a proper distance with curvature bounded from below by −1. In
dimension 3, this space naturally identifies with the space of distances with non-negative
curvature on the 2-sphere.
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1 Introduction

Intrinsic area of convex bodies

A convex body is a non-empty compact convex subset of Rn. In this article, we set n > 1. For
a plane convex body K (i.e. a convex body in R2), speaking about the “area” of K usually
means to look at its two dimensional Lebesgue measure. Note that the area of plane convex
bodies is positively homogeneous of degree 2: for λ > 0, area(λK) = λ2area(K). For a
convex body in R3, the “area” usually refers to its surface area, i.e. the 2-dimensional total
Hausdorff measure of its boundary ∂K. Here also, the surface area is positively homogeneous
of degree two.

There are two ways to generalize the notion of “area” to convex bodies in Rn for n > 3.
Both are coming from the Steiner Formula. Let Bn be the closed unit ball centred at the
origin in Rn, and let κn be its volume. Let us set κ0 = 1 and κ1 = 2. If K is a convex body
in Rn, then there exists non-negative real numbers Vi(K), i = 0, . . . , n such that, for any
ǫ > 0,

voln(K + ǫBn) =

n∑

i=0

ǫn−iκn−iVi(K) . (1.1)

Here voln is the Lebesgue measure of Rn, and the sum is the Minkowski addition: A+B =
{a+ b|a ∈ A, b ∈ B}. It appears that V0(K) = 1 and Vn(K) = voln(K).

The first way to generalize the notion of surface area of convex bodies in R3 is to consider
Vn−1(K) as the “area”, given by the first order variation of voln(K+ǫBn), seen as a function
of ǫ. Note that this “area” is homogeneous of degree (n − 1), and that for n = 2, this is
related to the perimeter of the convex body and not to its area.

Instead, in this paper, we will consider the intrinsic area V2(K). Let us mention some
relevant properties.

A1) For any λ > 0, V2(λK) = λ2V2(K);

A2) V2(K) ≥ 0;

A3) K1 ⊂ K2 ⇒ V2(K1) ≤ V2(K2);

A4) V2(K) = 0 if and only if K is a point or a segment;

A5) for any A ∈ SL(n,R) and p ∈ Rn, V2(A(K) + {p}) = V2(K);

A6) Let ι : Rn → Rn+1 be a linear isometric embedding. Then V2(ι(K)) = V2(K).

These properties are well-known, however we will give proofs. Note that Property A1)
above is straightforward from (1.1), as well as A5), by invariance of the Lebesgue measure.
It is also clear from (1.1) that points and segments have zero intrinsic area, see Figure 1.
The property A6) explains the denomination “intrinsic”. For example, if n = 2, then V2(K)
is the R2 Lebesgue measure of K. If n = 3, then the intrinsic area is half of the surface area
(see [32]). If K is a convex body in R3 contained in a 2-plane P , then the surface area of
K is two times the area of K in P : the area has to be taken into account two times, as K
has two support planes that coincide with P . This is coherent with property A6), that says
that the intrinsic area of K does not depend on the dimension of the ambient space.

For proofs and comments around property A6), see see pp. 208 and 214 in [32], as well
as [27, 28] and Proposition 3.2 in [13] and the references given there.

2



ℓ

ǫ
K

Figure 1: Let K be a segment of length ℓ in Rn. Then voln(K+ǫBn) is the sum of the volume
of two half n-dimensional balls of radius ǫ, plus ℓ times the volume of a (n− 1)-dimensional
ball. By (1.1), V2(K) = 0 and V1(K) = ℓ.

There is a geometric interpretation of the intrinsic area of a convex body K that we
won’t use: it is, up to a dimensional constant, the mean value of the areas of the orthogonal
projections of K onto two dimensional vector planes [32, (5.72)].

In the sequel we will also consider V1(K), which is related to the mean width of the
convex body K, see Remark 4.12. We will see in Section 2.4 that this quantity is also
intrinsic. Let us note that V1 of a segment is its length, see Figure 1.

For future references, let us give the following example. Writing voln(B
n + ǫBn) =

vol((1 + ǫ)Bn) = (1 + ǫ)nκn, from (1.1) we have κn

∑n
i=0

(
n
i

)
ǫn−i =

∑n
i=0 ǫ

n−iκn−iVi(B
n)

so, using classical equalities, we obtain,

V2(B
n) = (n− 1)

nκn

2κn−2
= (n− 1)π , (1.2)

and also, if Wn =
∫ π/2

0 cosn is the Wallis’ integral,

V1(B
n) =

nκn

κn−1
=

vol(Sn−1)

κn−1
= 2π

κn−2

κn−1
=

π

Wn−1
= 2nWn ∼ 2n

√
π

2n
=

√
2πn . (1.3)

Note that in particular we have V1(B
1) = 2. Let us introduce the following dimensional

constants:

r1(n) = V1(B
n)−1, r2(n) = V2(B

n)−1/2 , (1.4)

which are such that a n-th dimensional ball of radius r1(n) has V1 = 1, and a n-th dimen-
sional ball of radius r2(n) has V2 = 1.

Mixed-area of convex bodies

The (intrinsic) area can be “polarized”, in the sense that there exists a function called the
(intrinsic) mixed-area V2(·, ·), that can be defined as

V2(K1,K2) =
1

2
(V2(K1 +K2)− V2(K1)− V2(K2)) , (1.5)

and satisfying the following properties:

M1) V2(K1,K1) = V2(K1);

M2) V2(K1,K2) = V2(K2,K1);

M3) V2(K1 +K2,K3) = V2(K1,K3) + V2(K2,K3);
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M4) for λ > 0, V2(λK1,K2) = λV2(K1,K2);

M5) K1 ⊂ K2 ⇒ V2(K1,K3) ≤ V2(K2,K3);

M6) K is a point if and only if for any convex body Q, V2(K,Q) = 0;

M7) V2(K1,K2) ≥ 0; and V2(K1,K2) = 0 if and only if K1 or K2 is a point, or both are
segments with the same direction;

M8) we have
δ(K1,K2) = V2(K1,K2)

2 − V2(K1)V2(K2) ≥ 0 (1.6)

and if K1 and K2 are not points, then equality occurs if and only if K1 and K2 differ
by a translation and a positive homothety;

M9) we have
V2(K1,K2) ≥

√
V2(K1)V2(K2)

and if K1 and K2 are not points, then equality occurs if and only if K1 and K2 differ
by a translation and a positive homothety.

Only properties M1) and M2) are obvious from (1.5). The property M8) is a particular
case of the famous Alexandrov–Fenchel inequality. M9) is M8) written with the help of M7).

For future references, let us note the following particular case. Developing using Steiner
formula (1.1) both sides of voln((K+Bn)+ ǫBn) = voln(K+(1+ ǫ)Bn) and using (1.2) and
(1.3), we have V2(K +Bn) = V2(K) + V1(B

n−1)V1(K) + V2(B
n), and from (1.5) we finally

obtain

V2(K,Bn) =
1

2
V1(B

n−1)V1(K) . (1.7)

If K ⊂ R2, then V1(K) is half the perimeter per(K), and V2(K) is the area vol2(K), so
property M8) is the isoperimetric inequality: indeed it reads

0 ≤ V2(K,B2)2 − V2(K)V2(B
2) =

1

4
V1(B

1)2V1(K)2 − vol2(K)V2(B
2)

=
per(K)2

4
− π vol2(K) .

Even if the space of convex bodies is not a vector space, from its properties the mixed-area
reminds a symmetric bilinear form, whose kernel is the space of points, and whose isotropic
cone is the space of points and segments. Moreover the Alexandrov–Fenchel inequality
(1.6) reminds a reversed Cauchy–Schwarz inequality. In the present paper we give the good
framework to formalize those analogies. Apart from our main results that are stated below,
we will also give proofs of the properties mentioned above within this framework —although
they are classical, as intrinsic volumes are particular cases of mixed-volumes [32].

The area metric on the space of shapes

In the sequel we denote by Kn the set of convex bodies in Rn, and by Kn∗ the subset of
convex bodies of positive intrinsic area. In other terms, by A2) and A4), Kn∗ is Kn minus
points and segments.

By property M9) of the mixed-area, for any K1,K2 ∈ Kn∗ we can set

d̃1(K1,K2) = argch

(
V2(K1,K2)√
V2(K1)V2(K2)

)
.
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This is clear that this quantity is invariant under positive homotheties of K1 and K2. More-
over, by A5) and (1.5), for all p ∈ Rn,

V2(K1 + {p},K2) = V2(K1,K2 + {p}) = V2(K1,K2) ,

hence d̃1 is invariant under translations of K1 or K2. By the case of equality in property
M9), d̃1(K1,K2) = 0 if and only if K1 is the image of K2 by a translation and a positive
homothety.

Let us define the space OShapen (resp. OShapen∗) as the quotient of Kn (resp. Kn∗) by
the action of translations and positive homotheties. For a convex body K, we denote by [K]
the oriented shape of K, that is the equivalence class of K for the action of translations and
positive homotheties. We can then define the area metric on OShapen∗: for any [K1], [K2] ∈
OShapen∗ we set

d1([K1], [K2]) = d̃1(K1,K2) .

Let K1,K2 ∈ Kn∗. Assume that V2(K1) = V2(K2) = a > 0. Assume also that [K1] 6=
[K2], that is, K1 is not the image of K2 by a translation and a positive homothety. Consider
the following equation:

V2((1− t)K1 + tK2) = 0 . (1.8)

By properties of the mixed-area, the left-hand side is a polynomial in t, and the coefficient
of t2 is 2a − 2V2(K1,K2). Since [K1] 6= [K2], by Alexandrov-Fenchel’s inequality M8) we
have V2(K1,K2) > a: the coefficient of t2 is negative, in particular this is a second order
polynomial. An easy calculation shows that its discriminant is equal to 4δ(K1,K2) > 0 (see
(1.6)). Let t1 < 0 < 1 < t2 be the two solutions of the equation (1.8), and let us define

d̃2(K1,K2) =
1

2
ln[0, 1, t1, t2] ,

where [0, 1, t1, t2] is the cross-ratio (see Section 3.2). By (1.8), it is clear that d̃2 is invariant by
translation of K1 or K2. Let [K1], [K2] ∈ OShapen∗, and let K1,K2 be two representatives
having the same intrinsic area. We can then define

d2([K1], [K2]) = d̃2(K1,K2) ,

if [K1] 6= [K2], and zero otherwise.
Classical trigonometry will show that d1 = d2 (see Section 3.2). We will denote it as

dOS n . For futur reference, let us note that in particular we have, by (1.3) and (1.7),

dOS n([Bn], [K]) = argch

(√
n− 1

π
Wn−1

V1(K)√
V2(K)

)
. (1.9)

The main part of the present article is to prove the following properties for dOS n .

Theorem 1. (OShapen∗, dOS n) is a uniquely geodesic proper metric space of infinite Haus-
dorff dimension and infinite diameter. The unique shortest path between [K1] and [K2] is
[(1 − t)K1 + tK2], t ∈ [0, 1]. Any element of OShapen∗ is the endpoint of a shortest path
that is not extendable beyond this point. Moreover, (OShapen∗, dOS n) has curvature bounded
from below and above by −1 in the sense of Alexandrov.

Its boundary is OShapen \ OShapen∗ and is homeomorphic to the real projective space
of dimension (n− 1).

Let us recall the following definitions and basic properties:

• a metric space is geodesic if any two points are joined by a shortest path, it is uniquely
geodesic if the shortest path is unique;
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• a metric space is proper if every bounded closed subset is compact, and a proper metric
space is locally compact and complete;

• a shortest path is extendable if it is strictly contained in another shortest path;

• the boundary of a metric space is the set of equivalence classes of geodesic rays at
bounded distance, endowed with a natural topology [9].

• see Definition 5.1 for the property to have bounded curvature in the sense of Alexan-
drov.

Some assertions in Theorem 1 are rather straightforward. The description of the bound-
ary follows because it is the set of segments up to translations and positive homotheties.
(OShapen∗, dOS n) is infinite dimensional because it contains finite dimensional hyperbolic
convex polyhedra of arbitrary dimension constructed in [3] and [17].

The fact that (OShapen∗, dOS n) is proper is non immediate, as it will follow from (the
Blaschke selection theorem and) a theorem of R.A. Vitale, see Section 4.3.

The other properties stated in Theorem 1 will be a consequence of the description of the
extrinsic geometry of (OShapen∗, dOS n): it is isometric to a convex subset of a hyperbolic
space of infinite dimension, see the next section.

It is interesting to compare the fact that (OShapen∗, dOS n) has curvature bounded from
above and below to the following classical result of V. Beretovskij: any locally compact
metric space with curvature bounded from above and below and such that shortest paths
are extendable is isometric to a finite dimensional Riemannian manifold [6, 5]. Here we have
a strong property of non-extendability, proved in Section 4.4.

Convex subset of infinite dimensional hyperbolic space

Mimicking the finite dimensional case, given any separable Hilbert space H of infinite di-
mension, one can define a subset which will deserve the name infinite dimensional hyperbolic
space, see Section 3. In the present paper, we will define the infinite dimensional hyper-
bolic space H∞

n by using as Hilbert space a vector subspace of the Sobolev space H1(Sn−1),
endowed with a bilinear form related to the intrinsic area, see Section 2.1. The support
function of convex bodies will give a map from (OShapen∗, dOS n) into H∞

n . More precisely
we have the following.

Theorem 2. (OShapen∗, dOS n) is isometric to an infinite dimensional closed convex subset
with empty interior and ideal points of H∞

n .

The construction of the infinite dimensional hyperbolic space H∞
n actually depends on n.

Although for different n, all the resulting H∞
n are isometric (as separable infinite dimensional

Hilbert spaces are all isometric), it is interesting to keep in mind this dependence, as we
will define canonical totally geodesic isometric embeddings of H∞

n into H∞
n+1, that have the

following interpretation for convex bodies. For P a k-dimensional vector subspace of Rn, let
us denote by OShapen∗P the subset of OShapen∗ made of oriented shapes of convex bodies in
Rn contained in an affine space directed by P . It will be obvious from the proof of Theorem 2
that OShapen∗P is a convex subspace of (OShapen∗, dOS n), isometric to (OShapek∗, dOS k).
See also Section 6.

We don’t know if some results of hyperbolic geometry can be translated into results for
convex bodies.

Space of shapes

In Section 5 we investigate Shapen∗, the quotient of OShapen∗ by linear isometries of the
Euclidean space Rn: Shapen∗ is the space of convex bodies in Rn (not reduced to points or
segments) up to Euclidean similarities.
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From general properties of quotient of metric spaces with curvature bounded from below
by −1 (in short, CBB(−1)) by a compact isometry group (see Section 5), the metric dOS n

induces a metric dS n on Shapen∗, with the following properties.

Theorem 3. (Shapen∗, dS n) is a CBB(−1) proper geodesic metric space with boundary
reduced to a point. It is not uniquely geodesic. It contains many totally geodesic hyperbolic
surfaces.

The fact that (Shapen∗, dS n) is not uniquely geodesic implies that it is not CAT(0),
hence not CAT(−1). However we don’t know if it could be locally CAT(0).

The case n = 3 is of some interest, as by famous results of Alexandrov and Pogorelov,
there is a natural homeomorphism between (Shape3∗, dS 3) and the space of metrics of non-
negative curvature on the sphere S2 of total area one, up to isometries (endowed with the
Gromov–Hausdorff topology). In turn, we are providing a CBB(−1) metric on this space
of metrics on the sphere, see Section 5.7. This is close from a celebrated construction of
W.P. Thurston [34] using the area form in order to give a (complex) hyperbolic structure
on the space of flat metrics with prescribed conical singularities of positive curvature on
the sphere S2, up to orientation-preserving isometries —see [16] for the relations between
Thurston’s construction and the one of the present paper.

As an example of open questions related to the present work, the last section of the
present paper introduce the inductive limits of OShapen∗ and Shapen∗, that is allowed by
the intrinsic nature of the distances we defined. They are spaces of the oriented shapes and
shapes of all the convex bodies.

Let us mention the fact that a similar construction can be performed for spaces of convex
set in a Lorentzian Minkowski space (instead of convex sets of the Euclidean space as in the
present paper), which are invariant under a cocompact lattice of linear isometries. For such
sets, a Steiner formula holds, but the intrinsic area form leads to a positive definite form on
the suitable Sobolev space. In turn, one obtains a convex subset of an infinite dimensional
spherical (instead of hyperbolic) space. We refer to [15, 16] for more details.

Notations

To avoid confusions, let us describe here the notations we will use in the article. Everything
that appears here will be defined precisely later.

Kn (resp. Kn∗) is the set of convex bodies in Rn (resp. convex bodies with positive
intrinsic area), and Kn

S (resp. Kn∗
S ) is the subset of convex bodies with Steiner point at the

origin (resp. convex bodies with positive intrinsic area).
In the sequel, a star as upperscript mean that we consider only convex bodies with

positive intrinsic area (that is, we exclude points and segments). In the following table, it
is obvious that all the sets without a star are in bijection, as well as all the sets with a star:

convex bodies up to positive with V2 = 1 with V1 = 1
in Rn... homotheties

up to translations OShapen and OShapen∗

with Steiner point Kn
SH and Kn∗

SH Kn
SV2

and Kn∗
SV2

Kn
SV1

and Kn∗
SV1

at the origin

We have Supp(Kn∗
S ) ⊂ Cn and

Supp(Kn∗
SH) ⊂ H∞

n , Supp(Kn∗
SV2

) ⊂ H∞
n , Supp(Kn∗

SV1
) ⊂ Klein

∞
n .

The map Supp defines isometries

(Kn∗
SH , dSH)

∼−→ (Supp(Kn∗
SH), dH) ,

(Kn∗
SV2

, dSV2
)

∼−→ (Supp(Kn∗
SV2

), dH) ,

(Kn∗
SV1

, dSV1
)

∼−→ (Supp(Kn∗
SV1

), dK) ,
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and all these sets are isometric to (OShapen∗, dOS n).

Acknowledgements. The authors want to thank Nicola Gigli, Julien Maubon, Graham
Smith, Pierre-Damien Thizy and Giona Veronelli for useful conversations. This work was
completed during a visit of the second author at SISSA. He wants to thank the institution
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2 Infinite dimensional Minkowski space

In this section, we recall elementary properties of the spherical Laplacian and we introduce
the bilinear form V2

n
on a Sobolev space, that will be the main object of this paper.

2.1 Laplacian on the sphere

Let us denote by ‖ · ‖L2 the L2 norm on the round sphere Sn−1. Let H1(Sn−1) be the
Sobolev space of Sn−1, i.e. the space of functions Sn−1 → R which are in L2(Sn−1) as well
as their first order derivatives in the weak sense. The space H1(Sn−1) is implicitly endowed
with the norm

‖h‖H1 =
(
‖h‖2L2 + ‖∇h‖2L2

)1/2
=

(∫

Sn−1

h2 + ‖∇h‖2
)1/2

where the gradient ∇ is the one of the round sphere.
Let us recall basic facts about the Laplace–Beltrami operator ∆ on Sn−1. A reference

for the results mentioned here is [12]. The first eigenvalues are denoted as follows:

0 = λ0 < λ1 = n− 1 < λ2 < · · · .

The eigenspace associated to λ0 is the space of constant functions. We will denote by
H1(Sn−1)0 the subspace of H1(Sn−1) of functions L2-orthogonal to the constant functions,
i.e.

H1(Sn−1)0 = {h ∈ H1(Sn−1)| (h, 1)L2 = 0} ,

where (·, ·)L2 is the L2 scalar product on Sn−1, and 1 is the constant function equal to 1 on
Sn−1. Obviously, this is also the space of functions in H1(Sn−1) which are H1-orthogonal
to the constant functions.

The eigenspace associated to λ1 is the vector space spanned by the restrictions to the
sphere of the coordinates functions of Rn (we identify the round sphere Sn−1 with the sphere
of unit vectors in the Euclidean space Rn). We will denote by H1(Sn−1)1 the subspace of
H1(Sn−1) of functions L2-orthogonal to the eigenspace of λ1, i.e.

H1(Sn−1)1 = {h ∈ H1(Sn−1)|
(
h, xi

)
L2 = 0 , i = 1, . . . , n}

= {h ∈ H1(Sn−1)|
∫

Sn−1

h(x)xdSn−1(x) = 0} .

Note that this is also the space of functions H1-orthogonal to the vector space spanned by
the restrictions to the sphere of the coordinates functions of Rn. Indeed, for i ∈ {1, . . . , n} we
have ∆xi = λ1x

i, hence
∫
hxi = 0 implies

∫
h∆xi = 0, and by Stoke’s theorem

∫
〈∇h,∇xi〉 =

0. Let us denote
H1(Sn−1)01 = H1(Sn−1)0 ∩H1(Sn−1)1 .

By Rayleigh theorem, for h ∈ H1(Sn−1)01 \ {0} we have

λ2 ≤ ‖∇h‖2L2

‖h‖2L2

. (2.1)
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2.2 The form V2

n

We are interested in the following quadratic form on H1(Sn−1), which will be related to the
intrinsic area V2 in Section 4.2. For h ∈ H1(Sn−1),

V2
n
(h) = cn

(
‖h‖2L2 − λ−1

1 ‖∇h‖2L2

)
, (2.2)

where cn is a positive dimensional constant (recall that λ1 = n − 1). Its precise value will
be relevant only in Section 2.4. This quadratic form comes from the following bilinear form
V2

n
(·, ·): for h, k ∈ H1(Sn−1),

V2
n
(h, k) = cn

(
(h, k)L2 − λ−1

1 (∇h,∇k)L2

)
.

To avoid confusions, let us emphasis that

V2
n
(h, h) = V2

n
(h) .

Fact 2.1. The kernel of V2
n
(·, ·) on H1(Sn−1) is the eigenspace of λ1. In turn, V2

n
is

non-degenerate on H1(Sn−1)1.

Proof. Let h ∈ H1(Sn−1). The function h belongs to the kernel of V2
n
(·, ·) if and only if for

any k ∈ H1(Sn−1) we have
∫

Sn−1

hk = λ−1
1

∫

Sn−1

〈∇h,∇k〉 .

By density of smooth functions on Sn−1 for the H1−norm and by Green’s formula, this is
equivalent to the following property: for any smooth function k on Sn−1 we have

∫

Sn−1

hk = λ−1
1

∫

Sn−1

h∆k ,

and this means h = λ−1
1 ∆h in the weak (hence smooth) sense.

In the following, we will consider the restriction of V2
n

to H1(Sn−1)1, on which it is
a non-degenerate bilinear form. Furthermore, we will see that the restriction of V2

n
to

H1(Sn−1)01 is negative definite.

Lemma 2.2. For h ∈ H1(Sn−1)01,

cn

(
λ2 − λ1

λ1

)
‖h‖2L2 ≤ −V2

n
(h) (2.3)

and

cn

(
λ2 − λ1

λ1λ2

)
‖h‖2H1 ≤ −V2

n
(h) ≤ cn

1

λ1
‖h‖2H1 . (2.4)

Proof. (2.3) is immediate from (2.1), and the right-hand side inequality in (2.4) follows from

−V2
n
(h) ≤ cnλ

−1
1 ‖∇h‖2L2 ≤ cnλ

−1
1 ‖h‖2H1 .

The left-hand side inequality in (2.4) follows by adding the two following inequalities: as
λ2 > λ1 = n− 1 ≥ 1, (2.3) gives

cn
1

λ2

(
λ2 − λ1

λ1

)
‖h‖2L2 ≤ −V2

n
(h) ,

and on the other hand, using again (2.1), the equality (2.2) gives

cn

(
1

λ1
− 1

λ2

)
‖∇h‖2L2 ≤ −V2

n
(h) .
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Proposition 2.3. (H1(Sn−1)01,−V2
n
(·, ·)) is a separable Hilbert space.

Proof. By (2.3) or (2.4), −V2
n

is a scalar product on H1(Sn−1)01. As H1(Sn−1)01 is orthog-
onal to a vector subspace, it is a closed subspace, hence complete and separable for the H1

norm. The result follows from (2.4).

Let L be the line of constant functions in H1(Sn−1)1. For h ∈ H1(Sn−1)1, let us introduce
the number

mean(h) =
1

vol(Sn−1)

∫

Sn−1

h .

Note that we have mean(h) = c−1
n vol(Sn−1)−1V2

n
(h, 1). Abusing notation, we will denote

by mean the function from H1(Sn−1)1 to L sending h to the function on the sphere having
constant value mean(h). Obviously H1(Sn−1)01 is the set of elements h of H1(Sn−1)1 such
that mean(h) = 0, and from the definitions it is immediate that H1(Sn−1)01 and L are
V2

n
-orthogonal.
For future reference, note that for any h ∈ H1(Sn−1)1 we have h−mean(h) ∈ H1(Sn−1)01 ,

hence for any constant function c,

V2
n
(h−mean(h), c) = 0 .

For any h, k ∈ H1(Sn−1)1 that gives, writing h = (h − mean(h)) + mean(h) and k =
(k −mean(k)) +mean(k),

V2
n
(h, k) = V2

n
(h−mean(h), k −mean(k)) +mean(h)mean(k)V2

n
(1) . (2.5)

2.3 Inequalities and signature

Let us introduce the following cone (see Figure 2)

Cn = {h ∈ H1(Sn−1)1|V2
n
(h) > 0,mean(h) > 0} , (2.6)

and let
Cn = {h ∈ H1(Sn−1)1|V2

n
(h) ≥ 0,mean(h) > 0} .

Fact 2.4. For any h, k ∈ Cn we have

V2
n
(h, k) > 0 (2.7)

and for any h, k ∈ Cn we have
V2

n
(h, k) ≥ 0 . (2.8)

Proof. Notice that (2.8) is a consequence of (2.7): indeed, for every h, k ∈ Cn and ǫ > 0 we
have h+ ǫ, k + ǫ ∈ Cn: we have

V2
n
(h+ ǫ) = V2

n
(h) + 2ǫV2

n
(h, 1) + ǫ2V2

n
(1) > 0

(remember that V2
n
(h, 1) = cn vol(S

n−1)mean(h) > 0), and the same holds for V2
n
(k + ǫ).

So if (2.7) is true we have

V2
n
(h+ ǫ, k + ǫ) = V2

n
(h, k) + ǫV2

n
(h, 1) + ǫV2

n
(1, k) + ǫ2V2

n
(1) > 0 ,

and when ǫ goes to zero this gives (2.8).
Now, let us prove (2.7). If h ∈ Cn, then V2

n
(h) > 0, hence by (2.5),

0 < V2
n
(h) = V2

n
(h−mean(h)) +mean(h)2V2

n
(1) .

10



As −V2
n

is non-negative on H1(Sn−1)01 (Lemma 2.2), this gives

0 ≤ −V2
n
(h−mean(h)) < mean(h)2V2

n
(1) .

Using the classic Cauchy–Schwarz inequality in H1(Sn−1)01 (Proposition 2.3) and the above
equation we obtain

−V2
n
(h−mean(h), k −mean(k)) ≤

√
−V2

n
(h−mean(h))

√
−V2

n
(k −mean(k))

< mean(h)mean(k)V2
n
(1)

(recall that mean(h) and mean(k) are both positive). The result follows from (2.5).

The following is an immediate consequence of (2.7).

Fact 2.5. The cone Cn is convex.

The following fact explains why (H1(Sn−1)1, V2
n
) may be considered as an infinite di-

mensional Minkowski space (in the Lorentzian sense).

Fact 2.6. The restriction of V2
n
(·, ·) to any vector subspace of finite dimension p of H1(Sn−1)1,

containing an element of Cn, has Lorentzian signature (+,−, . . . ,−), with 1 positive direction
and p− 1 negative directions.

Proof. By definition, V2
n

is positive when evaluated on any vector of Cn, and the intersection
of the vector space with H1(Sn−1)01 has dimension (p−1), on which V2

n
is negative definite

from Proposition 2.3.

Fact 2.7 (Reversed Cauchy–Schwarz inequality). For any h, k ∈ Cn, we have

V2
n
(h, k)2 ≥ V2

n
(h)V2

n
(k) , (2.9)

or if one prefers, by Fact 2.4,

V2
n
(h, k) ≥ V2

n
(h)1/2V2

n
(k)1/2 . (2.10)

Equality holds if and only if h = λk, λ > 0.

Proof. The equality is obvious if h, k ∈ Cn are colinear.
Let h, k ∈ Cn be non-colinear. Then they span a plane, which, by Fact 2.6, contains a

positive and a negative vector for V2
n
. So there exists a t such that V2

n
(h+ tk) is positive,

and a t such that V2
n
(h+ tk) is negative, hence the second order polynomial t 7→ V2

n
(h+ tk)

has a positive discriminant. This gives (2.9) with a strict inequality.
Now let h, k ∈ Cn be non-colinear. If h, k ∈ Cn then we know that (2.9) holds with a strict

inequality, so for example assume that V2
n
(k) = 0. Then V2

n
(h+tk) = V2

n
(h)+2tV2

n
(h, k),

and h and k span a plane, hence there exists some t such that V2
n
(h+ tk) < 0. This shows

that V2
n
(h, k) 6= 0, hence V2

n
(h, k)2 > 0 = V2

n
(h)V2

n
(k).

2.4 Intrinsic nature of V1

n

and V2

n

We settle that, in the definition of V2
n
,

cn =
(n− 1)Wn−1

κn−1

(1.3)
=

n− 1

2κn−2
(2.11)

(recall that Wn is the Wallis’ integral). For future reference, let us note that in particular
we have c2 = 1/2, and that the dimensional constant r2(n) introduced in (1.4) satisfies

r2(n) = V2
n
(1)−1/2 .

11



This definition of cn allows to prove that, for natural embeddings of H1(Sn−1) into H1(Sn)
(defined below), the corresponding value of V2

n
will not change.

In Rn+1, choose a point N ∈ Sn, and choose a direct orthonormal base B of the hyper-
plane N⊥, such that (B, N) is a direct orthonormal basis of Rn+1. Let RB,N ∈ SO(n + 1)
be the unique rotation sending the canonical basis of Rn+1 on (B, N). It is clear that RB,N ,
restricted to Sn−1 ≡ Sn−1 × {0} ⊂ Rn+1 is an isometric embedding of Sn−1 into Sn (given
by the intersection N⊥ ∩ Sn). Moreover, every such embedding is obtained in this way.

This gives the following coordinates on Sn \ {N,−N}:

ΦB,N : Sn−1×]− π

2
,
π

2
[→ Sn, (x, t) 7→ RB,N (cos(t)x, sin(t)) .

Remark 2.8. Assume that RB,N is the identity, and let Φ = ΦB,N . Then an orthonormal
basis of the tangent space of Sn at the point Φ(x, t) is

(
1

cos(t)
∇∂θ1Φ(x, t), . . . ,

1

cos(t)
∇∂θn−1

Φ(x, t),∇∂tΦ(x, t)

)
,

where ∂θ1, . . . , ∂θn−1 is an orthonormal basis of the tangent space of Sn−1 at the point x.
In particular, the Jacobian of Φ at the point (x, t) is cosn−1(t).

For h ∈ H1(Sn−1) let us define EB,N (h) : Sn → R by 0 on {N,−N}, and otherwise

EB,N (h) ◦ ΦB,N (x, t) = cos(t)h(x) .

The geometric meaning of the functions EB,N (h) will be clarified in Section 4.1 and Fact 4.10.

Proposition 2.9. We have defined an injective linear map EB,N from H1(Sn−1) to H1(Sn).
Moreover, EB,N (H1(Sn−1)1) ⊂ H1(Sn)1 and EB,N (H1(Sn−1)01) ⊂ H1(Sn)01.

The first part of the proposition is obvious, and the two inclusions are direct consequences
of the following lemma.

Lemma 2.10. For h ∈ H1(Sn−1) we have
∫

Sn

EB,N (h) = 2Wn

∫

Sn−1

h (2.12)

and ∫

Sn

EB,N (h)(v)v = RB,N

(
2Wn+1

∫

Sn−1

h(u)u, 0

)
∈ Rn+1 .

Proof. The Jacobian of ΦN at the point (x, t) is cosn−1(t), hence a change of variable gives
the first identity.

For the second one, with the same change of variable we obtain
∫

Sn

EB,N (h)(v)v =

∫

Sn−1×]−π
2
,π
2
[

cosn(t)h(x)RB,N (cos(t)x, sin(t)) ,

and this gives the result since
∫ π

2

−π
2

cosn(t) sin(t)dt = 0.

Let us define

V1
n
(h) =

1

κn−1

∫

Sn−1

h .

Note that V1
n
(h) = nκn

κn−1
mean(h). As we will show later, this quantity is related to V1(K)

for a convex body K. As 2Wn = κn

κn−1
, the first formula in Lemma 2.10 says that

V1
n+1

(EB,N (h)) = V1
n
(h) . (2.13)
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Proposition 2.11. Let h ∈ H1(Sn−1). The quantity V2
n
(h) is intrinsic in the following

sense:
V2

n+1
(EB,N (h)) = V2

n
(h) .

Proof. Since the integral of h2 and ‖∇h‖2 are invariant by rotation, we may assume that
RB,N is the identity (that is, the embedding of Sn−1 in Sn is given by Sn−1 ⊂ Rn × {0}).
For simplicity, let E = EB,N and Φ = ΦB,N .

We have the relation

‖∇E(h)(Φ(x, t))‖2 = ‖∇h(x)‖2 + sin2(t)h(x)2 .

Indeed, using the notations of Remark 2.8, the relation E(h) ◦ Φ(x, t) = cos(t)h(x) and the
chain rule formula we get

∇E(h)(Φ(x, t)) ·
(

1

cos(t)
∇∂θiΦ(x, t)

)
=

1

cos(t)
∇∂θi(E(h) ◦ Φ)(x, t) = ∇∂θih(x)

and
∇E(h)(Φ(x, t)) · ∇∂tΦ(x, t) = ∇∂t(E(h) ◦ Φ)(x, t) = − sin(t)h(x) .

Hence by the change of variables given by Φ we obtain
∫

Sn

‖∇E(h)‖2 =

∫

Sn−1×]−π
2
,π
2
[

cosn−1(t)
(
‖∇h‖2 + sin2(t)h2

)

= 2Wn−1

∫

Sn−1

‖∇h‖2 + 2(Wn−1 −Wn+1)

∫

Sn−1

h2 ,

and by the same change of variables we get
∫

Sn

E(h)2 =

∫

Sn−1×]−π
2
,π
2
[

cosn−1(t) cos2(t)h2 = 2Wn+1

∫

Sn−1

h2 .

This gives

V2
n+1

(E(h)) = cn+1

(∫

Sn

E(h)2 − 1

n

∫

Sn

‖∇E(h)‖2
)

= 2cn+1

((
Wn+1 −

Wn−1 −Wn+1

n

)∫

Sn−1

h2 − Wn−1

n

∫

Sn−1

‖∇h‖2
)

.

Using the relation Wn+1 = n
n+1Wn−1 we get

Wn+1 −
Wn−1 −Wn+1

n
=

n+ 1

n
Wn+1 −

1

n
Wn−1 = (n− 1)

Wn−1

n
,

and noting that 2cn+1Wn−1(n−1)
n = cn for any n > 1 (see equation (1.3)), we finally obtain

V2
n+1

(E(h)) =
2cn+1Wn−1(n− 1)

n

(∫

Sn−1

h2 − 1

n− 1

∫

Sn−1

‖∇h‖2
)

= V2
n
(h) .

3 Infinite dimensional hyperbolic space

In this section, we use the bilinear form V2
n

defined in the preceding section, in order to define
an infinite dimensional hyperbolic space. The content of this section is almost elementary.
Actually, apart from some convergence properties, the constructions are formally the same as
in the finite dimensional case. However we are provinding details for the sake of completeness.

We introduce three models of the infinite dimensional hyperbolic space:
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Cn

Klein
∞
n

H∞
n

H1(Sn−1)01
L

r1(n)

r2(n)

Pn V1 = 1

V1 = 0

Figure 2: Notations for subspaces of H1(Sn−1)1.

• a hyperboloid model H∞
n in (H1(Sn−1)1, V2

n
), which is in natural bijection with

H1(Sn−1)01, that will allow to check some completeness properties;

• a projective model H∞
n , which allows to get rid of normalizations, and on which we

can define a Hilbert distance;

• a Klein ball model Klein
∞
n , an affine chart of the projective model, in which the

geodesics are very easy to describe (these are convex combinations).

3.1 Hyperboloid model

Let us introduce
H∞

n = {h ∈ Cn|V2
n
(h) = 1} ,

where Cn is the cone defined in (2.6).
Let pH : H∞

n → H1(Sn−1)01 be the map pH(h) = h − mean(h). It is a bijection
between H∞

n and H1(Sn−1)01, and its inverse is the map p−1
H : H1(Sn−1)01 → H∞

n defined
by p−1

H (h) = h+ c(h), where c(h) is the constant function on Sn−1 defined as

c(h) = r2(n)

√
1− V2

n
(h) :

indeed, since h ∈ H1(Sn−1)01, we have V2
n
(h + c(h)) = V2

n
(h) + c(h)2V2

n
(1), hence the

equation V2
n
(h+ c(h)) = 1 gives the formula above (recall that r2(n) = V2

n
(1)−1/2). Note

that c(h) is well defined on H1(Sn−1)01, on which V2
n ≤ 0.

As the Hilbert structure on H1(Sn−1)01 is given by V2
n
, the map V2

n
is smooth, so

c : H1(Sn−1)01 → R is also smooth. It follows that as a graph, H∞
n is an infinite dimensional

smooth manifold. We implicitly endow it with the restriction of −V2
n
(·, ·) on its tangent

spaces. The intersection of H∞
n with any vector p-plane of H1(Sn−1)1 containing a vector of

Cn is a hyperboloid model of the hyperbolic space of dimension (p− 1) by Fact 2.6. In turn,
H∞

n is a Riemannian manifold of constant sectional curvature −1. However, it will deserve
the name infinite dimensional hyperbolic space once we will have checked its completeness,
that is the content of the remainder of this section, see Corollary 3.6.

At a metric level, Fact 2.7 implies that for any h, k ∈ H∞
n we have V2

n
(h, k) ≥ 1, so we

can define the following: for h, k ∈ H∞
n we set

dH(h, k) = argchV2
n
(h, k) . (3.1)

Using again an intersection with a finite dimensional vector space, it is well known that dH
is indeed a distance, actually the one given by the Riemannian structure. In the same way
we obtain the following.
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Fact 3.1. (H∞
n , dH) is a uniquely geodesic metric space, and the shortest path between h

and k is the intersection of H∞
n with the vector plane spanned by h and k.

We will denote by d01 the distance induced by
√
−V2

n
on H1(Sn−1)01: for h, k ∈ H1(Sn−1)01

we set

d01(h, k) =

√
−V2

n
(h− k) .

Lemma 3.2. The map pH : H∞
n → H1(Sn−1)01 is expanding: for every h, k ∈ H∞

n we have

dH(h, k) ≤ d01(pH(h),pH(k)) . (3.2)

Proof. For h, k ∈ H∞
n , the inequality V2

n
(h, k) ≥ 1 + dH(h, k)2/2 follows directly from

cosh(u) ≥ 1 + u2/2 and (3.1), and with V2
n
(h− k) = 2− 2V2

n
(h, k) we obtain

dH(h, k) ≤
√
−V2

n
(h− k) .

Moreover by (2.5), for every f ∈ H1(Sn−1)1,

−V2
n
(f −mean(f)) = −V2

n
(f) +mean(f)2V2

n
(1) ≥ −V2

n
(f) ,

hence
√
−V2

n
(pH(h)− pH(k)) =

√
−V2

n
(h− k −mean(h− k))) ≥

√
−V2

n
(h− k)

and this gives the result.

Lemma 3.3. The map c is (r2(n) tanh(t))-Lipschitz on the ball of radius sinh(t) centered
at 0 in (H1(Sn−1)01, d01).

Proof. For u, v ≥ 0 we have the formula
√
1 + u−

√
1 + v =

√
u+

√
v√

1+u+
√
1+v

(
√
u−√

v), and this
gives

|c(h)− c(k)| = r2(n)

∣∣∣∣
√
1− V2

n
(h)−

√
1− V2

n
(k)

∣∣∣∣

= r2(n)

√
−V2

n
(h) +

√
−V2

n
(k)

√
1− V2

n
(h) +

√
1− V2

n
(k)

∣∣∣∣
√
−V2

n
(h)−

√
−V2

n
(k)

∣∣∣∣ .

Moreover,

∣∣∣∣
√
−V2

n
(h)−

√
−V2

n
(k)

∣∣∣∣ = |d01(0, h) − d01(0, k)| ≤ d01(h, k), and there exists

s, s′ < t such that
√
−V2

n
(h) = sinh(s) and

√
−V2

n
(k) = sinh(s′), hence

√
−V2

n
(h)+

√
−V2

n
(k)√

1−V2
n
(h)+

√
1−V2

n
(k)

=

tanh( s+s′

2 ) ≤ tanh(t).

Lemma 3.4. Let O be the ball centered at 0 and of radius sinh(t) in H1(Sn−1)01. For every
h, k ∈ p−1

H (O) ⊂ H∞
n , we have

(1− tanh(t))d01(pH(h),pH(k)) ≤ dH(h, k) . (3.3)

Proof. Let γ : [0, dH(h, k)] → H∞
n be the arc-length parametrized geodesic between h and k

in H∞
n . We have dH(h, k) =

∫ √
−V2

n
((p−1

H ◦ γ̄)′), with γ̄ = pH(γ). Note that (p−1
H ◦ γ̄)′ =
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(γ̄ + c ◦ γ̄)′ = γ̄′ + (c ◦ γ̄)′. This gives, using the inequality
√
a− b ≥ √

a −
√
b valid for

a ≥ b ≥ 0,

√
−V2

n
((p−1

H ◦ γ̄)′) =
√
−V2

n
(γ̄′)− (c ◦ γ̄)′2r2(n)−2 ≥

√
−V2

n
(γ̄′)− |(c ◦ γ̄)′|r2(n)−1

(recall that V2
n
(1) = r2(n)

−2). By Lemma 3.3, |(c ◦ γ̄)′| ≤ r2(n) tanh(t)

√
−V2

n
(γ̄′). Finally

we obtain

dH(h, k) ≥ (1 − tanh(t))

∫ √
−V2

n
(γ̄′) ,

and since
∫ √

−V2
n
(γ̄′) is the length of a curve in H1(Sn−1)01 between pH(h) and pH(k),

it is ≥ d01(pH(h),pH(k)) and this ends the proof.

Lemma 3.2 and 3.4 give the following.

Corollary 3.5. The map pH : (H∞
n , dH) → (H1(Sn−1)01, d01) is locally bi-Lipschitz.

Hence from Proposition 2.3 one obtains the following.

Corollary 3.6. (H∞
n , dH) is complete.

We also obtain the following.

Corollary 3.7. On H∞
n , dH and ‖ · ‖H1 induce the same topology.

Proof. Let (hi) be a sequence in H∞
n converging to h ∈ H∞

n for ‖ · ‖H1 . Then (hi) (resp.
(∇hi)) converges to h (resp. ∇h) in L2, hence V2

n
(hi − h) → 0. But V2

n
(hi − h) =

2− 2V2
n
(hi, h), hence V2

n
(hi, h) → 1 and dH(hi, h) = argch(V2

n
(hi, h)) → 0.

On the other hand, let (hi) be a sequence in H∞
n converging to h ∈ H∞

n for dH.
Then by Corollary 3.5 we have pH(hi) = hi − mean(hi) → pH(h) = h − mean(h) in
(H1(Sn−1)01, d01), hence ∇pH(hi) → ∇pH(h) in L2 (see Lemma 2.2), so ∇hi → ∇h in L2.
Moreover, V2

n
(h− hi) = cn(‖h− hi‖2L2 − λ−1

1 ‖∇h−∇hi‖2L2) → 0, hence hi → h in L2, and
this gives hi → h for ‖ · ‖H1 .

Remark 3.8. From Proposition 2.11, the maps EB,N induce totally geodesic isometric
immersions of H∞

n into H∞
n+1.

Remark 3.9. As in the finite dimensional case, the isometry group of (H∞
n , dH) is given

by the linear maps preserving V2
n
, up to a quotient by ±Id. We refer to [11] for this fact

and others about isometries of the infinite dimensional hyperbolic space.

3.2 Projective model

Let h, k ∈ Cn, with h 6= k, be such that V2
n
(h) = V2

n
(k) = a > 0. Consider the equation

V2
n
((1− t)h+ tk) = 0

(see also equation (1.8) in the introduction). The left-hand side gives the polynomial

t2V2
n
(h− k) + 2tV2

n
(h, k − h) + V2

n
(h) .

Since V2
n
(h) = V2

n
(k) = a, we have

V2
n
(h− k) = 2

(
a− V2

n
(h, k)

)
,
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and by Fact 2.7 this is negative (remember that h 6= k): hence this is a second order
polynomial. A direct computation shows that the discriminant is 4δ(h, k), where we set

δ(h, k) = V2
n
(h, k)2 − a2 > 0 .

The two real solutions are t1 < 0 < 1 < t2 with

t1 =
V2

n
(h, h− k)−

√
δ(h, k)

V2
n
(h− k)

and t2 =
V2

n
(h, h− k) +

√
δ(h, k)

V2
n
(h− k)

.

Let us denote by H∞
n the projective quotient of Cn, and, for [h], [k] ∈ H∞

n , let us define

dH([h], [k]) :=
1

2
ln[0, 1, t1, t2] ,

where h, k are representative of [h], [k] respectively, such that V2
n
(h) = V2

n
(k), and [0, 1, t1, t2] =

t1
t2

1−t2
1−t1

is the cross-ratio.

Fact 3.10. For h, k ∈ Cn we have

dH([h], [k]) = dH(V2
n
(h)−1/2h, V2

n
(k)−1/2k) = argch


 V2

n
(h, k)√

V2
n
(h)V2

n
(k)


 . (3.4)

Proof. Let a = V2
n
(h) = V2

n
(k). A direct computation yields to t1t2 = V2

n
(h)

V2
n
(h−k)

, and this

gives

[0, 1, t1, t2] =
t1 − t1t2
t2 − t1t2

=
V2

n
(h, h− k)−

√
δ(h, k)− V2

n
(h)

V2
n
(h, h− k) +

√
δ(h, k)− V2

n
(h)

=
V2

n
(h, k) +

√
δ(h, k)

V2
n
(h, k)−

√
δ(h, k)

,

hence

dH([h], [k]) =
1

2
ln

(
V2

n
(h, k) +

√
δ(h, k)

V2
n
(h, k)−

√
δ(h, k)

)
=

1

2
ln




(
V2

n
(h, k) +

√
δ(h, k)

)2

V2
n
(h, k)2 − δ(h, k)




=
1

2
ln




(
V2

n
(h, k) +

√
δ(h, k)

)2

a2


 = ln

(
V2

n
(h, k)

a
+

√
δ(h, k)

a

)
.

And the formula argch(u) = ln(u +
√
u2 − 1) valid for u ≥ 1 gives

argch

(
V2

n
(h, k)

a

)
= ln


V2

n
(h, k)

a
+

√
V2

n
(h, k)2

a2
− 1


 = ln

(
V2

n
(h, k)

a
+

√
δ(h, k)

a

)

and this ends the proof.

Hence the map
NorV2

n : H∞
n → H∞

n ,

defined by choosing the unique representative of an equivalence class in H∞
n which is in H∞

n

(that is, which satisfies V2
n
= 1), is an isometry between (H∞

n , dH) and (H∞
n , dH).
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3.3 Klein ball model

It is useful to consider an affine model of (H∞
n , dH). Let us consider the intersection Klein

∞
n

of Cn with the affine hyperplane

Pn = {h ∈ H1(Sn−1)1 | V1
n
(h) = 1}

(see Figure 2), that is
Klein

∞
n = {h ∈ Cn | V1

n
(h) = 1} .

Remark 3.11. From (2.13), the maps EB,N induce injective maps of Klein
∞
n into Klein

∞
n+1,

which will appear to be totally geodesic isometric immersions.

Recall the dimensional constant r1(n) from (1.4). One can check that

r1(n) = V1
n
(1)−1 ,

that is V1
n
(r1(n)) = 1, hence r1(n) ∈ Klein

∞
n (we also denote by r1(n) the constant function

equal to r1(n) on Sn−1). From the following trivial fact, Klein
∞
n is an open ball in the affine

space Pn, in particular it is invariant under convex combinations.

Fact 3.12. We have Klein
∞
n = {h+ r1(n)|h ∈ H1(Sn−1)01,−V2

n
(h) < V2

n
(r1(n))} .

More formally, we have a map

NorV1
n : H∞

n → Klein
∞
n ,

defined by choosing the unique representative of an equivalence class in H∞
n which is in

Klein
∞
n (that is, which satisfies V1

n
= 1). The map NorV1

n is an isometry when Klein
∞
n is

endowed with the metric
dK(h, k) = dH([h], [k]) .

Note that by equation (3.4) we have, for any h, k ∈ Klein
∞
n ,

dK(h, k) = dH(V2
n
(h)−1/2h, V2

n
(k)−1/2k) = argch


 V2

n
(h, k)√

V2
n
(h)V2

n
(k)


 . (3.5)

One of the main interest of Klein
∞
n is the following result, which is immediate from Fact 3.1.

Lemma 3.13. Let h, k ∈ Klein
∞
n . Then the convex combination of h and k is the unique

shortest path between h and k for the metric dK.

We need the following elementary fact.

Fact 3.14. The function (H∞
n , dH) → R, h 7→

∫
Sn−1 h is continuous.

Proof. This function is linear on H1(Sn−1)1, and by Hölder inequality, |
∫
Sn−1 h| ≤

√
vol(Sn−1)‖h‖L2 ≤√

vol(Sn−1)‖h‖H1 , hence
∫
Sn−1 : (H∞

n , ‖·‖H1) → R is continuous. Then Corollary 3.7 proves
the claim.

Lemma 3.15. Let (hi)i converge to h in (Klein
∞
n , dK). Then V2

n
(h− hi) → 0.

Proof. By (3.5),
V2

n
(hi)

−1/2hi → V2
n
(h)−1/2h

in (H∞
n , dH). As

∫
Sn−1 hi =

∫
Sn−1 h on Klein

∞
n , by Fact 3.14 we obtain

V2
n
(hi)

−1/2 → V2
n
(h)−1/2 .
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Since (H∞
n , dH) is locally bi-Lipschitz to (H1(Sn−1)01, d01), we have

pH(V2
n
(hi)

−1/2hi) → pH(V2
n
(h)−1/2h)

in (H1(Sn−1)01, d01), that is V2
n
(hi)

−1/2(hi − mean(hi)) → V2
n
(h)−1/2(h − mean(h))

in (H1(Sn−1)01, d01). Since (H1(Sn−1)01, d01) is a normed vector space and mean(hi) =

mean(h), we obtain hi → h in (H1(Sn−1)01, d01), that is
√
−V2

n
(h− hi) → 0.

We use this Lemma, as well as the equivalence of topologies on H∞
n (as stated in Corol-

lary 3.7) to prove the following. We denote by dH1 the distance given by ‖·‖H1 on H1(Sn−1)1.

Proposition 3.16. On Klein
∞
n , dK and dH1 define the same topology.

Proof. If dK(hi, h) → 0, then by Lemma 3.15 we have V2
n
(h−hi) → 0, hence since h− hi ∈

H1(Sn−1)01 we have by Lemma 2.2 hi → h for ‖ · ‖H1 . Now suppose that hi → h for
‖ · ‖H1 . By (3.5) and Corollary 3.7, to prove dK(hi, h) → 0 this is sufficient to prove that

1√
V2

n
(hi)

hi → 1√
V2

n
(h)

h for ‖ · ‖H1 . Since hi → h for ‖ · ‖H1 , we have V2
n
(hi) → V2

n
(h) > 0,

and then the right-hand side of the following inequality goes to zero:

‖ 1√
V2

n
(hi)

hi −
1√

V2
n
(h)

h‖H1 ≤ 1√
V2

n
(hi)

‖hi − h‖H1 +

∣∣∣∣∣∣
1√

V2
n
(hi)

− 1√
V2

n
(h)

∣∣∣∣∣∣
‖h‖H1 .

Concerning the intersection of the isotropic cone of V2
n

with Pn, we have the following
property.

Proposition 3.17. Let hi ∈ Klein
∞
n and k ∈ Klein

∞
n . Then

V2
n
(hi) → 0 ⇐⇒ dK(hi, k) → +∞ .

Proof. First, let us remark that mean(hi) = mean(k) = r1(n), hence equation (2.5) gives

V2
n
(hi, k) = V2

n
(hi − r1(n), k − r1(n)) + V2

n
(r1(n)) (3.6)

and

V2
n
(hi) = V2

n
(hi − r1(n)) + V2

n
(r1(n)) and V2

n
(k) = V2

n
(k − r1(n)) + V2

n
(r1(n)) . (3.7)

Assume that dK(hi, k) = argch

(
V2

n
(hi,k)√

V2
n
(hi)V2

n
(k)

)
→ +∞. Since (3.6) implies V2

n
(hi, k) ≤

V2
n
(r1(n)), we have V2

n
(hi,k)√

V2
n
(hi)V2

n
(k)

≤ V2
n
(r1(n))√

V2
n
(hi)V2

n
(k)

, hence V2
n
(hi) → 0.

Now assume that V2
n
(hi) → 0. To prove that dK(hi, k) → +∞ it is sufficient to show

that for i large enough, V2
n
(hi, k) is bounded from below by a positive constant. By (3.6)

and Cauchy–Schwarz inequality in H1(Sn−1)01 we have

V2
n
(hi, k) ≥ −

√
V2

n
(hi − r1(n))V2

n
(k − r1(n)) + V2

n
(r1(n)) .

By equation (3.7) we have V2
n
(hi − r1(n)) = V2

n
(hi) − V2

n
(r1(n)) → −V2

n
(r1(n)), hence

we obtain

−
√
V2

n
(hi − r1(n))V2

n
(k − r1(n))+V2

n
(r1(n)) → −

√
−V2

n
(r1(n))V2

n
(k − r1(n))+V2

n
(r1(n)) .

By equation (3.7) we have −V2
n
(k−r1(n)) < V2

n
(r1(n)), hence this limit is positive, and this

proves that for i large enough, V2
n
(hi, k) is bounded from below by a positive constant.
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4 Spaces of convex bodies

In this section, we are considering spaces of convex bodies in Rn. Convex bodies are deter-
mined by their support functions, that are functions living in the spaces introduced in the
preceding sections. The intrinsic area V2 can be written with the help of the bilinear form
V2

n
.

4.1 Support functions

The support function Supp(K) of a convex body K in Rn gives, at the point x ∈ Sn−1,
the distance from the origin of Rn to the support hyperplane of K with outward normal x.
More precisely, Supp(K) : Sn−1 → R is defined as

Supp(K)(x) = max
p∈K

〈x, p〉 ,

where 〈·, ·〉 is the usual scalar product of Rn.
The support functions are characterized among functions on Sn−1 by the following fact,

see [32].

Fact 4.1. A function h : Sn−1 → R is the support function of a convex body in Rn if
and only if its one homogeneous extension h̃ : Rn → R, h̃(x) = ‖x‖h(x/‖x‖), is a convex
function.

Let us recall some elementary facts about the support functions. For the next one, see
[18, (2.2.3)]. Recall that we denote by Kn the space of convex bodies in Rn.

Lemma 4.2. Let K ∈ Kn. If Supp(K) ≤ R, then Supp(K) is R-Lipschitz.

In particular, Supp(K) belongs to H1(Sn−1), so in turn the support function defines a
map

Supp : Kn → H1(Sn−1) .

Fact 4.3. The map Supp satisfies the following properties:

• Supp(K1 +K2) = Supp(K1) + Supp(K2);

• Supp(λK) = λSupp(K), λ > 0;

• Supp is a bijection onto its image;

• if K1 ⊂ K2, then Supp(K1) ≤ Supp(K2);

• Supp(Kn) is a convex cone in H1(Sn−1).

The last point follows because the convex combination of convex bodies is a convex body.

Remark 4.4. Let us warn the reader that if Supp(λK) = λSupp(K), λ > 0, we don’t have
Supp(−K) = − Supp(K) in general, where −K = {−x|x ∈ K}. Indeed, both Supp(−K)
and Supp(K) are positive if the origin of Rn is in the interior of K. Actually, Supp(−K)(v) =
Supp(K)(−v), and − Supp(K) is like the support function of K but with the support planes
defined by their inward unit normals.

The two next lemmas show that support functions of convex bodies have strong conver-
gence properties. For this lemma, see [32, Theorem 1.8.15].

Lemma 4.5. Let Ki,K ∈ Kn. If (Supp(Ki))i converges pointwise to Supp(K), then the
convergence is uniform.
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N

x

(x, t)

h(x)K

cos(t)h(x)

Figure 3: The extension of a support function to a higher dimensional space, see Fact 4.10.
Here h(x) = Supp(K)(x).

For the next result, see [18, Lemma 2.3.4] or [19].

Lemma 4.6. Let Ki,K ∈ Kn such that (Supp(Ki))i converges to Supp(K). Then, almost
everywhere, (∇ Supp(Ki))i converges pointwise to ∇ Supp(K).

In the following, C0(Sn−1) is the set of continuous functions on Sn−1, and for h ∈
C0(Sn−1) we set ‖h‖∞ = sup{|h(x)|, x ∈ Sn−1}. Let d∞ be the distance induced by ‖ · ‖∞
on Supp(Kn). Abusing notation, we also denote by Supp the map from Kn to C0(Sn−1)
(instead of Sobolev space) which associates to a convex body its support function.

Remark 4.7. The pull-back of d∞ onto Kn is the classical Hausdorff distance, [32, Lemma 1.8.14].
Recall that the Hausdorff distance between K1 and K2 in Rn is the min of the non-negative
λ such that K1 ⊂ K2 + λBn and K2 ⊂ K1 + λBn.

Lemma 4.6 gives the following

Corollary 4.8. In Supp(Kn), if d∞(hi, h) → 0 then dH1 (hi, h) → 0.

Proof. This is obvious that hi → h in L2. Moreover, let R > 0 be such that hi ≤ R for
every i. Then (∇hi)i almost everywhere converges pointwise to ∇h, hence the convergence
holds in L2 via Lebesgue’s dominated convergence: these functions are uniformly bounded
by R by Lemma 4.2. Hence hi → h for ‖ · ‖H1 .

By definition, V2
n
(·, ·) is continuous in each entry on H1(Sn−1), hence Corollary 4.8 gives

the following.

Corollary 4.9. V2
n
(·, ·) is continuous in each entry on (Supp(Kn), d∞).

Let us end this section giving a geometric interpretation of the functions EB,N (h) from
Section 2.4, see also Figure 3.

Fact 4.10. Let K ∈ Kn and ι : Rn → Rn+1 be a linear isometric embedding. If B be is the
image by ι of the canonical basis of Rn, and N is such that (B, N) is a direct orthonormal
basis of Rn+1, then

Supp(ι(K)) = EB,N (Supp(K)) .
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Proof. Denote by h′ ∈ H1(Sn) the support function of ι(K), and let RB,N ∈ SO(n+1) be the
unique rotation sending the canonical basis of Rn+1 on (B, N): we have RB,N (x, 0) = ι(x) for
x ∈ Rn, so in particular RB,N(p, 0) = ι(c) for any p ∈ K. So for any (x, t) ∈ Sn−1×]− π

2 ,
π
2 [

we have

h′(ΦB,N (x, t)) = max
p∈K

〈ΦB,N (x, t), ι(p)〉

= max
p∈K

〈RB,N (cos(t)x, sin(t)), RB,N (p, 0)〉

= max
p∈K

〈cos(t)x, p〉 = cos(t)h(x) .

4.2 Properties of the intrinsic area

A C2
+(n) convex body K is a convex body in Rn with C2 boundary and such that its Gauss

map is a diffeomorphism from the boundary of K onto Sn−1. We will repeatedly use the
following approximation result, see e.g. [18, Lemma 2.3.3].

Fact 4.11. Supp(C2
+(n)) is dense in (Supp(Kn), d∞).

If K ∈ C2
+(n), then the eigenvalues of the second differential of ˜Supp(K) (the one-

homogeneous extension of Supp(K)) at x ∈ Sn−1 are 0 (with eigenvector x) and positive
numbers r1, . . . , rn−1, which are the principal radii of curvature of (the boundary of) K. We
can consider the ri as functions on Sn−1 [32, Corollary 2.5.2]. A change of variable provided
by the Gauss map gives [32, p. 58, 119]

voln(K) =
1

n

∫

Sn−1

Supp(K)r1 · · · rn−1 .

Now for ǫ > 0, as on the one hand the Gauss map of Bn is the identity, and on the other
hand if λ is an eigenvalue of a matrix A, then λ+ ǫ is an eigenvalue of A+ ǫ Id, we obtain

voln(K + ǫBn) =
1

n

∫

Sn−1

(Supp(K) + ǫ)(r1 + ǫ) · · · (rn−1 + ǫ) , (4.1)

and Steiner formula (1.1) follows for C2
+(n) convex bodies. Note that we can make a poly-

nomial interpolation for the intrinsic volumes: given n+1 different positive numbers ǫ, (1.1)
can be considered as a solvable linear system of d + 1 equations with Vi(K) as unknowns
—the matrix of the system is a Vandermonde matrix. In turn, the Vi(K) are linear combi-
nation of volumes, hence the maps Vi : Kn → R are continuous for the Hausdorff topology
as the volume is continuous for the Hausdorff topology on the space of convex bodies [32].

From (4.1) we obtain in particular

V1(K) =
1

nκn−1

∫

Sn−1

Supp(K) + r1 + · · ·+ rn−1 .

But r1 + · · · + rn−1 is the trace of the second differential of ˜Supp(K), and since for 1-
homogeneous functions f on Rn we have, as functions on Sn−1,

∆ef = (n− 1)f +∆f ,

where ∆e is the Laplacian of Rn and ∆ is the Laplacian of Sn−1, we have

r1 + · · ·+ rn−1 = (n− 1) Supp(K) + ∆Supp(K) . (4.2)
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As by Green formula
∫
Sn−1 ∆Supp(K) = 0 we obtain

V1(K) =
1

κn−1

∫

Sn−1

Supp(K) .

Note that this gives
V1(K) = V1

n
(Supp(K)) .

Clearly, by Fact 4.11, the formula above holds for any convex body.

Remark 4.12. By Fact 4.10 and (2.13), we obtain that if ι : Rn → Rn+1 is a linear isometric
embedding, then

V1(ι(K)) = V1(K) .

Since V1
n
(Supp(K)) = nκn

κn−1
mean(Supp(K)), the quantity V1(K) is intimately related to

the mean width of K, which is equal to 2mean(Supp(K)).

We will use a Minkowski type formula, see Proposition 4.3.1 as well as the formula in
the bottom of p. 45 and Remark 4.3.2 in [30]:

∫

Sn−1

∑

i6=j

rirj =
n− 2

2

∫

Sn−1

Supp(K)(r1 + · · ·+ rn−1) .

On the other hand, we also obtain from (4.1) that

V2(K) =
1

nκn−2

∫

Sn−1

Supp(K)(r1 + · · ·+ rn−1) +
∑

i6=j

rirj

so

V2(K) =
1

2κn−2

∫

Sn−1

Supp(K)(r1 + · · ·+ rn−1) (4.3)

(2.11),(4.2)
= cn

∫

Sn−1

Supp(K)(Supp(K) + (n− 1)−1∆Supp(K))

and using Green formula,
V2(K) = V2

n
(Supp(K)) .

By density and continuity on both sides of the equation above, the equality above holds
actually for any convex body, that gives the bridge with the preceding sections. Seemly this
formula first appeared in [19, Theorem 4.2a], see also [32, p. 298] or [18, Proposition 2.4.2].

Let us check the properties of the intrinsic area stated in the introduction. Most of them
need to be checked for the C2

+(n) case, and then use again an approximation argument. For
any p ∈ Rn, V2(K + {p}) = V2(K), so up to a translation we can consider that the origin is
in the relative interior of K, that gives Supp(K) ≥ 0. As in the C2

+(n) case, ri > 0, A2) is
immediate from (4.3). A6) follows immediately from Proposition 2.11 and Fact 4.10.

A3) and A4) will be obtained as a byproduct of properties of the mixed-area: A3) is a
consequence of M5), and A4) is a consequence of M7).

From (1.5) and Green formula, one has

V2(K1,K2) = V2
n
(Supp(K1), Supp(K2)) ,

and this gives properties M3) and M4) of the mixed-area. Moreover in the C2
+(n) case,

V2(K1,K2) = cn

∫

Sn−1

Supp(K1)(r1(K2) + · · ·+ rn−1(K2)) ,
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and this gives property M5). If K is a point, it is immediate from (1.5) that V2(K,Q) = 0
for any Q, that gives an implication of M6). The first part of M7) follows from that and
from M5), by taking a point for K1. The second part of M7) follows from Fact 2.4 and the
following observation: if Q is a segment, for any other segment K with a different direction,
Q +K is a parallelogram with non-empty interior, and (1.5) gives that V2(K,Q) > 0. The
remaining implication in M6) follows from M7).

The Steiner point of a convex body is the following point of Rn:

stein(K) =
1

κn

∫

Sn−1

Supp(K)(x)xdSn−1 .

We will denote by Kn
S the space of convex bodies in Rn with the origin as Steiner point, and

by Kn∗
S the subset of convex bodies with positive intrinsic area. For clarity, let us note the

following obvious fact.

Fact 4.13. For K ∈ Kn we have

stein(K) = 0 ⇐⇒ Supp(K) ∈ H1(Sn−1)1 ,

so in particular
Supp(Kn

S) ⊂ H1(Sn−1)1 .

Moreover, if K ∈ Kn
S is not a point then Supp(K) ∈ Cn (see Section 2.3), and if K ∈ Kn

S is
not a point or a segment we have Supp(K) ∈ Cn, that is

Supp(Kn∗
S ) ⊂ Cn .

Let K1,K2 be two convex bodies. M8) does not change if a translation is performed on
K1 or K2, so we can consider that the Steiner point of both K1 and K2 is the origin. If K1

or K2 are points then M8) is obvious. Otherwise, Supp(K1) and Supp(K2) belong to Cn, so
Fact 2.7 (reversed Cauchy–Schwarz inequality) gives M8) (Alexandrov–Fenchel inequality).
Note that this result corresponds to classical geometric inequalities in R3 (see [32, p.387],
[24]). In R2, it is the famous Minkowski inequality, and as we have seen in the introduction,
if one of the two convex bodies is a disc, this gives the isoperimetric inequality.

Remark 4.14. Note that M6) is related to Fact 2.1. Indeed, support functions of points
are exactly the restriction of linear forms to the sphere: if p ∈ Rn, then Supp({p}) = 〈p, ·〉.
And these functions are exactly the kernel of V2

n
on H1(Sn−1).

4.3 Comparison of topologies

Recall that d∞ is the distance induced by ‖h‖∞ = sup{|h(x)|, x ∈ Sn−1}. One of the
principal features of d∞ is the classical Blaschke selection theorem, which says that from
each bounded sequence of convex bodies in Rn one can extract a converging subsequence for
the Hausdorff distance. Actually it is a direct consequence of Lemma 4.2 and the Arzela–
Ascoli Theorem. Let us state it in the following way.

Theorem 4.15 (Blaschke selection theorem). (Supp(Kn), d∞) is a proper metric space.

Let Kn
SV1

be the subset of Kn
S (convex bodies with Steiner point at the origin) of convex

bodies K such that V1(K) = 1. Elements of Kn
SV1

are sometimes called normalized convex
bodies, see p. 164 and after in [32]. Note that Kn

SV1
is stable under convex combinations of

convex bodies.

Fact 4.16. If K ∈ Kn
SV1

, then K is included in the closed unit ball in Rn.
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Proof. If this is not true, then there exists x ∈ K with ‖x‖ > 1. The Steiner point of K is
0 and belongs to K, hence [0, x] ⊂ K, which gives V1(K) ≥ V1([0, x]) = ‖x‖ > 1: this is a
contradiction.

Then Blaschke selection theorem (Theorem 4.15) implies the following

Corollary 4.17. (Supp(Kn
SV1

), d∞) is compact.

Proof. This is sufficient to show that Supp(Kn
SV1

) is closed and bounded in (Supp(Kn), d∞).
The boundedness is a direct consequence of Fact 4.16: for every h ∈ Supp(Kn

SV1
) we have

‖h‖∞ ≤ 1. And closeness is clear, since the maps h 7→
∫
Sn−1 h(x)xdSn−1(x) and h 7→∫

Sn−1 h(x)dSn−1(x) are continuous on (Supp(Kn), d∞).

Let Kn∗
SV1

the subset of Kn
SV1

of convex bodies of positive intrinsic area: it is clear that
Supp(Kn∗

SV1
) is a convex subset of Klein

∞
n . The goal is to prove that the analog of Theo-

rem 4.15 holds on (Supp(Kn∗
SV1

), dK). As a tool, we will use the distance dL2 induced by the
L2 norm on Supp(Kn∗

SV1
), as well as the following theorem, see [35] and [18, Proposition 2.3.1].

Theorem 4.18 (Vitale). The distances d∞ and dL2 induce the same topology on Supp(Kn) ⊂
C0(Sn−1).

The result is weaker than saying that the two norms are equivalent on the space of convex
bodies, that is not true, see [35] for details.

Corollary 4.19. The distances d∞, dL2 and dH1 induce the same topology on Supp(Kn).

Proof. We prove that dL2 and dH1 induce the same topology. If hi → h for ‖ · ‖H1 then
obviously hi → h for ‖ · ‖L2 . And if hi → h for ‖ · ‖L2 then by Theorem 4.18 we have hi → h
for d∞, and Corollary 4.8 proves the claim.

A direct consequence of Proposition 3.16 and Corollary 4.19 is the following corollary,
which relate the distances d∞ and dK.

Corollary 4.20. On Supp(Kn∗
SV1

), d∞ and dK (as well as dL2 and dH1) induce the same
topology.

Proposition 4.21. (Supp(Kn∗
SV1

), dK) is a proper metric space.

Proof. Let A be a closed bounded subset of (Supp(Kn∗
SV1

), dK). We want to show that A is
compact for dK; by Corollary 4.20, it suffices to show that it is compact for d∞. And by
Corollary 4.17, it suffices to show that A is closed in (Supp(Kn

SV1
), d∞).

So assume (hi)i is a sequence of elements of A converging to h ∈ Supp(Kn
SV1

) for d∞; we
want to show that h ∈ A. If h ∈ Supp(Kn∗

SV1
), then this is true, because Corollary 4.20 implies

that A is a closed subset of (Supp(Kn∗
SV1

), d∞). Otherwise, h ∈ Supp(Kn
SV1

) \ Supp(Kn∗
SV1

),

hence V2
n
(h) = 0 and by Corollary 4.9 we have V2

n
(hi) → 0. Then by Proposition 3.17, the

distance in (Klein
∞
n , dK) between hi and any given point k ∈ Klein

∞
n goes to infinity, and

that contradicts the fact that A is a bounded subset of (Supp(Kn∗
SV1

), dK).

Remark 4.22. Let us give an illustration of the fact that, even if d∞ and dK induce the
same topology, their behavior is quite different. First, recall that segments are shortest
paths for the Hausdorff metric. Indeed, for any K,L ∈ Kn and t ∈ (0, 1), d∞(Supp(K), (1−
t) Supp(K) + t Supp(L)) = ‖ Supp(K) − (1 − t) Supp(K) − t Supp(L)‖∞ = t‖ Supp(K) −
Supp(L)‖∞ = td∞(K,L). But conversely to dK, in general, segments are not the only
shortest path between two given convex bodies, see note 11 of Section 1.8 in [32].

25



K

ǫ

K + ǫB2

Figure 4: If a plane convex body K has a non-smooth point, then for any ǫ > 0, Supp(K)+
ǫ Supp(B2) is the support function of a convex body, while Supp(K)− ǫ Supp(B2) is not.

Figure 5: The disc and the segment [−1, 1] are both terminal points of the segment joining
them.

4.4 Terminal points of segments

Let K1,K2 ∈ Kn
SV1

. The segment between K1 and K2 is {(1 − t)K1 + tK2, t ∈ [0, 1]}. We
say that K1 ∈ Kn

SV1
is a terminal point of the segment if for any t < 0, (1− t) Supp(K1) +

t Supp(K2) /∈ Supp(Kn
SV1

). An extreme point K of Kn
SV1

is such that there does not exist
K1,K2 ∈ Kn

SV1
, K1 6= K2, and t ∈ (0, 1) such that Supp(K) = (1−t) Supp(K1)+t Supp(K2).

In the plane, extreme points of K2
SV1

are segments and triangles [32, Theorem 3.2.14]. For
n ≥ 3, extreme points of Kn

SV1
are dense for the Hausdorff metric [32, 3.2.18].

Clearly, an extreme point is a terminal point for all the segments ending at this point.
But there are much more terminal points. For example, one can find convex bodies with a
non smooth point on the boundary (i.e. a point of the convex body contained in more than
one support plane) which are terminal points for the segment starting at the unit ball —this
idea is illustrated in Figure 4.

In this section, we will use a different argument to prove that any convex body is the ter-
minal point of some segment (Proposition 4.24). The simplest case illustrating our argument
is depicted in Figure 5.

By Fact 4.1, if a function h ∈ Klein
∞
n belongs to Supp(Kn∗

SV1
), then the Laplacian of h̃

is non-negative, in the weak sense (h̃ is the one-homogenous extention of h). Let C∞
c (Rn)

be the set of smooth functions with compact support in Rn: this means that for every
non-negative function ϕ ∈ C∞

c (Rn) we have
∫

Rn

h̃(x)∆eϕ(x)dx ≥ 0 .
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For 1 ≤ p < n we will denote by Bp,n the p-dimensional ball with radius r1(p) in Rn,
which is the set of points x ∈ Rn with x2

1 + · · · + x2
p ≤ r1(p)

2 and xp+1 = · · · = xn = 0.
We have V1(Bp,n) = 1, hence Bp,n ∈ Kn

SV1
(note that Bp,n ∈ Kn∗

SV1
if and only if p ≥ 2).

Let bp,n = Supp(Bp,n) ∈ Supp(Kn
SV1

) and let b̃p,n(x) = r1(p)
√

x2
1 + · · ·+ x2

p be the 1-

homogeneous extension of bp,n (if p = 1, then b̃p(x) = r1(1)|x1| = |x1|
2 ).

Example 4.23 (The n−dimensional ball is the terminal point of a segment). Assume n ≥ 3,
and let p ∈ N be such that 2 ≤ p < n. Let K be the n−dimensional ball with radius r1(n)
in Rn: we have V1(K) = 1, hence K ∈ Kn

SV1
, and let k = Supp(K) ∈ Supp(Kn

SV1
) be its

support function. Then k is the terminal point of the segment starting at bp,n.
Indeed, the 1-homogeneous extension of the support function of K is

k̃(x) = r1(n)
√
x2
1 + · · ·+ x2

n ,

and ∆ek̃(x) = r1(n)(n−1)√
x2
1
+···+x2

n

. Also ∆eb̃p,n(x) =
r1(p)(p−1)√
x2
1
+···+x2

p

. Now let ǫ > 0 and consider the

point xǫ ∈ Rn such that x1 = · · · = xp = ǫ and xp+1 = · · · = xn = 1. For t < 0 we have

∆e((1− t)k̃ + tb̃p,n)(xǫ) =
(1− t)r1(n)(n− 1)√

pǫ2 + (n− p)
+

tr1(p)(p− 1)√
pǫ

,

and this quantity goes to −∞ when ǫ goes to zero. This shows that for t < 0, (1−t)k+tbp,n /∈
Supp(Kn

SV1
).

By using the same arguments we obtain the following.

Proposition 4.24. Let p ∈ N such that 1 ≤ p < n. Then any K ∈ Kn∗
SV1

is the terminal
point of a segment in Kn∗

SV1
, which starts at some embedded p−dimensional ball in Rn.

In fact the proof shows that there are infinitely many such segments.

Remark 4.25. If p = 1, this ball is in fact a segment and lies on the boundary of Klein
∞
n .

To prove this Proposition we need the following theorem due to Alexandrov (see [7]):

Theorem 4.26. A convex function f : Rn → R is twice differentiable at almost every
x̄ ∈ Rn, which means that for almost every x̄ ∈ Rn there exists a quadratic polynomial Qx̄

and a function Rx̄ such that

f(x) = Qx̄(x) +Rx̄(x) and lim
u→0

Rx̄(x̄+ u)

‖u‖2 = 0 .

Proof of Proposition 4.24. Let k = Supp(K) ∈ Supp(Kn∗
SV1

), and let k̃ be its 1-homogeneous

extension. Let x̄ ∈ Rn be a point at which k̃ is twice differentiable, and let Qx̄ and Rx̄ be
as in Alexandrov’s theorem. Since n > p, the vector space {x1 = · · · = xp = 0} has positive
dimension, hence up to a rotation of K we may assume that the first components of x̄ are
x̄1 = · · · = x̄p = 0.

Let ϕ ∈ C∞
c (Rn) be a non-negative function, with support in the unit ball in Rn, positive

in a neighborhood of 0, and with
∫
Rn ϕ = 1. For ǫ > 0, let ϕǫ ∈ C∞

c (Rn) be the function
ϕǫ(x) =

1
ǫnϕ(

x−x̄
ǫ ): this function is non-negative, has support in B(ǫ, x̄) (the ball centered

at x̄ and with radius ǫ), and
∫
Rn ϕǫ = 1.

Let t < 0. We want to show that (1− t)k+ tbp,n /∈ Supp(Kn∗
SV1

). We argue by contradic-

tion: assume that (1− t)k + tbp,n ∈ Supp(Kn∗
SV1

). Then (1− t)k̃+ tb̃p,n is a convex function
on Rn, hence its Laplacian is non-negative in the weak sense, so in particular we have

∫

Rn

((1 − t)k̃ + tb̃p,n)∆eϕǫ ≥ 0 . (4.4)
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We will first show that we always have
∫

Rn

k̃∆eϕǫ −→
ǫ→0

+∞ . (4.5)

Since t is negative, with equation (4.4) it is sufficient to show that
∫

Rn

b̃p,n∆eϕǫ −→
ǫ→0

+∞ . (4.6)

Now we need to argue depending whether p = 1 or p ≥ 2.

• If p ≥ 2 we have ∆eb̃p,n(x) = r1(p)(p−1)√
x2
1
+···+x2

p

, and since x̄1 = · · · = x̄p = 0 we have
√
x2
1 + · · ·+ x2

p ≤ ‖x − x̄‖, hence ∆eb̃p,n(x) ≥ r1(p)(p−1)
ǫ for every x ∈ B(ǫ, x̄), so we

have (by using Green’s formula)
∫

Rn

b̃p,n∆eϕǫ =

∫

B(ǫ,x̄)

ϕǫ∆eb̃p,n ≥ r1(p)(p− 1)

ǫ

∫

B(ǫ,x̄)

ϕǫ =
r1(p)(p− 1)

ǫ
,

and this gives (4.6).

• If p = 1, then we have
∫

Rn

b̃p,n(x)∆eϕǫ(x)dx =
1

2

∫

Rn

|x1|∆eϕǫ(x)dx

=

∫

Rn−1

ϕǫ(0, x2, . . . , xn)dx2 . . . dxn

=
1

ǫn

∫

Rn−1

ϕ

(
0,

x2 − x̄2

ǫ
, . . . ,

xn − x̄n

ǫ

)
dx2 . . . dxn

=
1

ǫ

∫

Rn−1

ϕ(0, y2, . . . , yn)dy2 . . . dyn :

the second equality is a classical computation, the third is true because x̄1 = 0, and
for the last one we use the change of variable yi = xi−x̄i

ǫ . Since ϕ is positive in
a neighborhood of zero we have

∫
Rn−1 ϕ(0, y2, . . . , yn)dy2 . . . dyn > 0, and this gives

(4.6).

Moreover, since k̃ = Qx̄ +Rx̄ we have
∫

Rn

k̃∆eϕǫ =

∫

Rn

Qx̄∆eϕǫ +

∫

Rn

Rx̄∆eϕǫ .

The function Qx̄ is a quadratic polynomial, hence its Laplacian is equal to a constant C ∈ R,
which gives

∫
Rn Qx̄∆eϕǫ =

∫
Rn Cϕǫ = C. And since ∆eϕǫ(x) = 1

ǫn+2∆eϕ(
x−x̄
ǫ ), with the

change of variable y = x−x̄
ǫ we have

∫

Rn

Rx̄(x)∆eϕǫ(x)dx =
1

ǫn+2

∫

B(ǫ,x̄)

Rx̄(x)∆eϕ

(
x− x̄

ǫ

)
dx

=
1

ǫ2

∫

B(1,0)

Rx̄(x̄+ ǫy)∆eϕ(y)dy .

Since Rx̄(x̄+u)
‖u‖2 −→

u→0
0, there exists M > 0 such that |Rx̄(x̄ + u)| ≤ M‖u‖2 for ‖u‖ small

enough, hence for ǫ small enough we have, for every y ∈ B(1, 0), |Rx̄(x̄ + ǫy)| ≤ Mǫ2‖y‖2,
hence we obtain

|
∫

Rn

Rx̄(x)∆eϕǫ(x)dx| ≤ M

∫

B(1,0)

‖y‖2|∆eϕ(y)|dy .
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The integral
∫
Rn Rx̄∆eϕǫ does not go to +∞ when ǫ goes to zero, and by (4.5) this is a

contradiction.

4.5 Proof of Theorems 1 and 2

Remember that the notations used in this article are described at the end of the introduction.
Let Kn∗

SH be the set of convex bodies in Rn, which are not points nor segments, with Steiner
point equal to 0, and modulo positive homotheties. Let dSH be the distance on Kn∗

SH such
that the projection map

(Kn∗
SH , dSH) → (OShapen∗, dOS n)

is an isometry. We obviously have the inclusion Supp(Kn∗
SH) ⊂ H∞

n , and by construction of
the metric we have the following:

(OShapen∗, dOS n) is isometric to (Supp(Kn∗
SH), dH) and (Supp(Kn∗

SV1
), dK) .

Moreover, Supp(Kn∗
S ) is a convex cone in Cn. Since Kn∗

SH is the quotient of Kn∗
S by the

action of positive homotheties, and H∞
n is the projective quotient of Cn, we obtain that

Supp(Kn∗
SH) is a convex subset of H∞

n .
This gives part of Theorem 2, as well as part of Theorem 1: (OShapen∗, dOS n) is isometric

to a convex subset of H∞
n . It is a uniquely geodesic metric space, the unique shortest path

between [K1] and [K2] being [(1− t)K1+ tK2], t ∈ [0, 1], and it has curvature bounded from
below and above by −1 in the sense of Alexandrov (see Section 5.1 for the definition of this
property). It is a proper metric space by Proposition 4.21, and Proposition 4.24 gives the
non-extendability property for shortest paths.

Since (OShapen∗, dOS n) is proper, it is complete, hence (Supp(Kn∗
SH), dH) is also com-

plete, so Supp(Kn∗
SH) ⊂ H∞

n is a closed subspace. Now, let us prove that Supp(Kn∗
SH)

has empty interior. If this is not true, then there exists a ball B in (H∞
n , dH) such that

B ⊂ Supp(Kn∗
SH); we can even assume that B̄ (the closure of B) satisfies B̄ ⊂ Supp(Kn∗

SH).
Since (Supp(Kn∗

SH), dH) is proper, closed balls are compact, hence B̄ is compact. Hence
there exists a non-empty relatively compact open set in (Klein

∞
n , dK). Hence by Corol-

lary 3.5 this is also true for the infinite-dimensional Banach space (H1(Sn−1)01, d01), and
that is impossible: a closed ball would be compact.

Moreover Supp(Kn∗
SH) contains an entire geodesic of H∞

n : it is sufficient to do it for n = 2.
In the plane, consider the following segments: K1 = [−1, 1]×{0} and K2 = {0}×[−1, 1]. For
0 ≤ t ≤ 1, the convex combination (1− t)K1 + tK2 is the rectangle [−(1− t), 1− t]× [−t, t],
whose Steiner point is 0. This gives an entire geodesic of H∞

2 contained in Supp(K2∗
SH).

The convex hyperbolic polyhedra constructed in [3] parametrize the shapes of convex
polygons with fixed angles; by construction, they isometrically embed into (OShape2∗, dOS 2).
As the dimension of the hyperbolic polyhedra is (s− 3) if the polygons have s edges, and by
the isometric immersions of (OShape2∗, dOS 2) into any (OShapen∗, dOS n) induced by any
linear isometric immersion of R2 into Rn, we arrive at the following fact, which in particular
shows that (OShapen∗, dOS n) has infinite Hausdorff dimension:

Fact 4.27. For any p ∈ N, there is an open ball of the finite dimensional hyperbolic space
Hp that isometrically embeds into (OShapen∗, dOS n).

Let us prove the assertion about the boundary ∂OShapen∗ of (OShapen∗, dOS n). It is
the space of segments, up to translations and homotheties: indeed, for example by looking
at the isometric model (Supp(Kn∗

SV1
), dK), we see that the convex bodies K on the boundary

are the one for which V2(K) = 0 (see Proposition 3.17) and V1(K) = 1, and these are
exactly segments. Hence ∂OShapen∗ is in bijection with Pn−1(R), the real projective space
of dimension n− 1 (that is, the space of lines in Rn).
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(V1
n
)−1(0)

(V2
n
)−1(0)(V2

n
)−1(0)

Supp(Kn∗
S )

Figure 6: The minus sign outside of the polygons indicates edges with negative algebraic
length, while the minus sign inside a polygon indicates a negative V2

n
. The dotted line is

the extension of the segment between the segment and the triangle.

We can endow ∂OShapen∗ with the visibility metric from [Bn]: the distance between
a, b ∈ ∂OShapen∗, denoted by <B (a, b), is the angle (with value in [0, π]) between the
two lines ca and cb from [Bn] and with endpoints a and b respectively. But clearly the
element of O(n) sending the line a to the line b is also a dOS n -isometry sending ca to cb.
In turn, ∂OShapen∗ endowed with the visibility metric is isometric to Pn−1(R) endowed
with its round metric. From [9, Proposition II.9.2], <B: ∂OShapen∗ × ∂OShapen∗ → R is
continuous for the classical topology on ∂OShapen∗. Hence for this topology, ∂OShapen∗ is
homeomorphic to Pn−1(R).

Remark 4.28. The smallest vector space containing Supp(Kn) as a convex cone is the
vector space spanned by the cone:

Sonicn = {h− k|h, k ∈ Supp(Kn)} ,

the space of n-dimensional hedgehogs. See [32, 9.6], [33] and the references therein for more
informations. Let us say that the name was coined in [22], although they previously appeared
in the literature under different names, see [29]. If h ∈ Sonicn, there is a way to associate a
geometric object in Rn, see [33, 26]. See figures 4, 5 and 6 for illustration.

A description of Sonic2 in C0(S1) is contained in [26]. But Sonicn is not complete for any
reasonable norm on it —it contains C2(Sn−1), so it is dense in both H1(Sn−1) and C0(Sn−1)
endowed with their classical norms.

Partial results were achieved in this setting (mostly in the regular case) in [23, 24, 25].

Remark 4.29 (Plane convex bodies). As a particular example, in the plane R2 we have

dOS 2([K], [B2]) = argch

(
per(K)

2
√
π vol2(K)

)
,

that is coherent with the isoperimetric inequality (we denote by per(K) is the perimeter of
K). In the plane, all the preceding results can be proven directly from Wirtinger’s inequality,
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as the intrinsic area is given by

V2(K) =
1

2

∫ 2π

0

Supp(K)2 − (Supp(K)′)2 ,

where a support function defined on the unit circle is considered as a 2π-periodic function
on R. See the last chapter of [14] for more details.

5 The space of shapes Shapen∗

In this section, we will investigate Shapen∗, the quotient of OShapen∗ by the action of linear
isometries O(n) of the Euclidean space Rn: Shapen∗ is the space of convex bodies in Rn

(not reduced to points or segments) up to Euclidean similarities. We will also study its
quotient metric dS n .

In particular we obtain that, as a quotient of a CBB(−1) space, (Shapen∗, dS n) is
CBB(−1). Although this is a well-known fact (see Section 10.2.2 in [10]), for a matter of
presentation we give a complete argument.

5.1 Metric spaces with bounded curvature

Consider the hyperbolic plane H2, with its hyperbolic metric dh. Let ABC be a triangle in
H2, and let us define a = dh(B,C), b = dh(A,C) and c = dh(A,B). Let mid(a, b, c) be the
distance between C and the midpoint of the shortest path AB. For futur references, let us
note that the function mid is increasing in a and b: using two times the hyperbolic cosine
law, one gets

cosh(mid(a, b, c)) =
cosh a+ cosh b

2 cosh(c/2)
.

Definition 5.1. We say that a metric space (X, d) is a CAT(−1) (resp. CBB(−1)) space if
(X, d) is geodesic and, for any triangle with length sides a, b, c and vertices A,B,C of (X, d),
if m is the middle point of the shortest path AB, then

d(C,m) ≤ mid(a, b, c) (resp. d(C,m) ≥ mid(a, b, c)) .

Note that the condition about the triangles in Definition 5.1 above is global, and that
we don’t require completeness of (X, d).

5.2 Properties of a quotient metric

Let (X, d) be a metric space, and let O be a subgroup of its isometry group. Assume that O is
endowed with a topology for which it is compact, and such that the maps A ∈ O 7→ A(x) ∈ X
are continuous for every x ∈ X . Let X̄ be the quotient space X̄ = X/O. For x ∈ X , we
denote by x̄ the equivalent class. Let d̄ : X̄ × X̄ → R be the following function:

d̄(x̄, ȳ) := inf
A,B∈O

d(A(x), B(y)) .

Since O is a group of isometries we have d(A(x), B(y)) = d(x,A−1B(y)), so d̄(x̄, ȳ) =
infA∈O d(x,A(y)). Moreover, by compactness of O and continuity of the map A ∈ O 7→
A(y) ∈ X we have

d̄(x̄, ȳ) = min
A∈O

d(x,A(y)) .

Lemma 5.2. The function d̄ is a metric on X̄.
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Proof. The symmetry property and the fact that d̄ separates points are obvious. Now let
x̄, ȳ, z̄ ∈ X̄, and let A,B ∈ O such that d̄(x̄, ȳ) = d(x,A(y)) and d̄(ȳ, z̄) = d(y,B(z)). Then

d̄(x̄, z̄) ≤ d(x,AB(z)) ≤ d(x,A(y)) + d(A(y), AB(z))

= d̄(x̄, ȳ) + d(y,B(z)) = d̄(x̄, ȳ) + d̄(ȳ, z̄) .

Let us denote by p : X → X̄ the projection map. It may exist an element x of X such
that for a continuous path At ∈ O we have At(x) = x (for example this will be the case
with X = OShapen∗ and x = [Bn]). In this case, p is not locally injective, so in general p is
not a covering map. Nevertheless, the following holds.

Lemma 5.3. The topology given by d̄ on X̄ is the quotient topology.

Proof. We need to show that a set Ω̄ ⊂ X̄ is open (for the topology given by d̄) if and only
if p−1(Ω̄) ⊂ X is an open set.

First, let us observe that the map p is continuous: indeed, if xn in X converges to x for
d, then we have 0 ≤ d̄(x̄n, x̄) ≤ d(xn, x), hence x̄n converge to x̄. This shows that if Ω̄ ⊂ X̄
is open, then p−1(Ω̄) ⊂ X is an open set.

On the other hand, assume that Ω̄ ⊂ X̄ is a set such that p−1(Ω̄) is an open set of X .
We want to show that Ω̄ is open. Let x̄ ∈ Ω̄, and let x ∈ X be such that p(x) = x̄. We
define the distance to X − p−1(Ω̄) as the function

y ∈ X 7→ d(y,X − p−1(Ω̄)) := inf
z∈X−p−1(Ω̄)

d(y, z)

(note that if X − p−1(Ω̄) = ∅, then X̄ = p(X) = p(p−1(Ω̄)) ⊂ Ω̄, so Ω̄ = X̄ is an open set).
This function is continuous (indeed it is 1−Lipschitz), hence the function

A ∋ O 7→ d(A(x), X − p−1(Ω̄))

is also continuous. Since O is compact, this function attains its minimum. And this minimum
can not be zero: indeed we have p(A(x)) = p(x) = x̄ ∈ Ω̄, so A(x) /∈ X − p−1(Ω̄), which
gives d(A(x), X − p−1(Ω̄)) > 0 (note that X − p−1(Ω̄) is a closed set). So there exists r > 0
such that

d(A(x), y) ≥ r for every A ∈ O and every y ∈ X − p−1(Ω̄) . (5.1)

This shows that BX̄(x̄, r) (which is the ball in (X̄, d̄) with center x̄ and radius r) is included
in Ω̄. Indeed, let ȳ ∈ BX̄(x̄, r), and let y ∈ X be such that p(y) = ȳ: there exists A ∈ O
such that d̄(x̄, ȳ) = d(A(x), y) < r, and equation (5.1) shows that y ∈ p−1(Ω̄), that is
ȳ = p(y) ∈ Ω̄.

The aim of the rest of this section is to prove the following.

Proposition 5.4. The following properties hold:

1. If d is proper, then d̄ is proper.

2. If d is a geodesic metric, then d̄ is a geodesic metric.

3. If (X, d) is CBB(−1), then (X̄, d̄) is CBB(−1).

Proof of property 1 in Proposition 5.4. Suppose that (X, d) is a proper metric space, and
let (x̄i)i∈N be a bounded sequence in (X̄, d̄). There are Ai ∈ O such that (Ai(xi))i∈N is a
bounded sequence in (X, d). Since (X, d) is proper, up to extract a subsequence, there exists
y ∈ X such that d(Ai(xi), y) → 0. As d̄(x̄i, ȳ) ≤ d(Ai(xi), y), we have d̄(x̄i, ȳ) → 0.
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Property 2 in Proposition 5.4 is a direct consequence of the

Lemma 5.5. Let x, y ∈ X, and let A ∈ O be such that d̄(x̄, ȳ) = d(x,A(y)). Suppose that
γ is a shortest path between x and A(y). Then the projection γ̄ = p ◦ γ is a shortest path
between x̄ and ȳ. Moreover the projection is an isometry from γ to γ̄.

Proof. Let us suppose that γ : [0, 1] → X is affinely parametrized. Then for any 0 ≤ s ≤
t ≤ 1,

d̄(γ̄(s), γ̄(t)) ≤ d(γ(s), γ(t)) = (t− s)d(x,A(y)) = (t− s)d̄(x̄, ȳ) .

Using three times this inequality we obtain

d̄(x̄, ȳ) ≤ d̄(γ̄(0), γ̄(s)) + d̄(γ̄(s), γ̄(t)) + d̄(γ̄(t), γ̄(1))

≤ (s+ (t− s) + (1− t))d̄(x̄, ȳ) = d̄(x̄, ȳ) .

All these inequalities are equalities, so in particular d̄(γ̄(s), γ̄(t)) = (t− s)d̄(x̄, ȳ).

In general, this is not true that every shortest path in the quotient space is obtained
as the projection of a shortest path. To prove property 3 in Proposition 5.4 we need the
following Lemma:

Lemma 5.6. Assume that d is geodesic (hence d̄ is also geodesic). If w̄ ∈ X̄ is the midpoint
of a shortest path between x̄ ∈ X̄ and ȳ ∈ X̄, then there exists A,B ∈ O such that:

• d̄(x̄, ȳ) = d(x,A(y)) and

• B(w) is the midpoint of a shortest path joining x and A(y) in X.

Proof. Let B ∈ O such that d̄(x̄, w̄) = d(x,B(w)), and A ∈ O such that d̄(ȳ, w̄) =
d(y,A−1B(w)). We have

d̄(x̄, ȳ) ≤ d(x,A(y)) ≤ d(x,B(w)) + d(B(w), A(y))

= d̄(x̄, w̄) + d(A−1B(w), y) = d̄(x̄, w̄) + d̄(ȳ, w̄) = d̄(x̄, ȳ) .

Hence all these inequalities are equalities and this ends the proof.

Proof of property 3 in Proposition 5.4. Suppose that (X, d) is a CBB(−1) space. Then in
particular (X, d) and (X̄, d̄) are geodesic metric spaces.

Let T be a geodesic triangle in X̄ with vertices x̄ȳz̄, and let w̄ be the midpoint of the
geodesic between x̄ and ȳ. In order to show that (X̄, d̄) is CBB(−1) we need to prove the
following inequality:

d̄(z̄, w̄) ≥ mid(d̄(ȳ, z̄), d̄(x̄, z̄), d̄(x̄, ȳ)) . (5.2)

By Lemma 5.6, there exists A,B ∈ O such that d̄(x̄, ȳ) = d(x,A(y)), and B(w) is
the midpoint of a shortest path L joining x and A(y) in X . Let C ∈ O be such that
d̄(z̄, w̄) = d(C(z), B(w)).

Now consider the geodesic triangle xA(y)C(z) in X (the shortest path between x and
A(y) is L). Since (X, d) is CBB(−1), and B(w) is the midpoint of the geodesic between x
and A(y), we have

d̄(z̄, w̄) = d(C(z), B(w)) ≥ mid(a, b, c) , (5.3)

where
a = d(A(y), C(z)) ≥ d̄(ȳ, z̄) ,
b = d(x,C(z)) ≥ d̄(x̄, z̄) ,
c = d(x,A(y)) = d̄(x̄, ȳ) .

(5.4)

This proves (5.2) since the function mid is increasing in a and b.
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5.3 The space of shapes

Let Shapen∗ be the quotient of OShapen∗ by linear isometries of the Euclidean space Rn:
the action of O(n) on OShapen∗ is defined by Φ[K] := [ΦK]. For K ∈ Kn∗, we will denote
by JKK the set of convex bodies differing from K by positive homotheties and Euclidean
isometries.

Since V2 is O(n)−invariant, we have dOS n(Φ[K1],Φ[K2]) = dOS n([K1], [K2]), so O(n)
acts by isometries on OShapen∗.

Fact 5.7. Let K ∈ OShapen∗. The map O(n) ∋ Φ 7→ Φ[K] ∈ OShapen∗ is continuous.

Proof. We have Supp(ΦK)(x) = Supp(K)(Φ−1(x)). In particular, if Φn → Φ in O(n),
then for any x ∈ Sn−1, Supp(ΦnK)(x) converges to Supp(ΦK)(x). The result follows from
Lemma 4.5 and Corollary 4.20.

This fact shows that we can apply the results of the previous section, for the action of
the (compact) group O(n) on (OShapen∗, dOS n). Let us introduce

dS n(JK1K, JK2K) = inf
Φ,Φ′∈O(n)

dOS n(Φ[K1],Φ
′[K2]) . (5.5)

We have dS n(JK1K, JK2K) = minΦ∈O(n) dOS n([K1],Φ[K2]) . The previous section gives the
following.

Proposition 5.8. (Shapen∗, dS n) is a CBB(−1) proper geodesic metric space.

5.4 Non-uniqueness of shortest paths in Shapen∗

The aim of this section is to prove that shortest paths are not unique in Shapen∗. Obviously,
since Shape2∗ isometrically embedds in Shapen∗ for n ≥ 2, this is sufficient to prove this
property for n = 2. Hence in this section we consider convex bodies in R2.

Let K be the intersection of the half-space [0,∞) × R with the ellipse with center 0,
width 2

√
2 and height 2√

2
. The support function of K is a function on S1, and with the

parametrization x = (cos s, sin s) ∈ S1, for s ∈ [0, 2π], we will actually define the support
function k of K on [0, 2π]. Namely,

k(s) =

√
2 cos2 s+

1

2
sin2 s for s ∈ [−π

2
,
π

2
], and k(s) =

1√
2
| sin s| for s ∈ [

π

2
,
3π

2
] .

Let (β, 0) be the Steiner point of K, and let α = V1(K) = 1
2

∫ 2π

0
k ≃ 2.4. Then the convex

body K1 = α−1K + (−α−1β, 0) has Steiner point 0, and V1(K1) = 1: hence K1 ∈ K2∗
SV1

. Its
support function k1 ∈ Supp(K2∗

SV1
) is given by

k1(s) = α−1

(√
2 cos2 s+

1

2
sin2 s− β cos s

)
for s ∈ [

−π

2
,
π

2
]

and

k1(s) = α−1

(
1√
2
| sin s| − β cos s

)
for s ∈ [

π

2
,
3π

2
] .

Let K2 be the rectangle [− 2
5 ,

2
5 ]× [− 1

10 ,
1
10 ]. Obviously, 0 is the Steiner point of K2. Its

support function is defined for any s ∈ [0, 2π] by

k2(s) =
2

5
| cos s|+ 1

10
| sin s| ,
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Figure 7: The convex body 1
2α

−1K + 1
2K2 (middle of the upper line) is not the image by

a rotation and a translation of (1− t)α−1K + tRπ
2
(K2) (represented on the bottom line for

t = 0, 1
4 ,

1
2 ,

3
4 , 1).

and since K2 = [− 2
5 ,

2
5 ] × {0} + {0} × [− 1

10 ,
1
10 ], we have V1(K2) = length([− 2

5 ,
2
5 ]) +

length([− 1
10 ,

1
10 ]) = 1. Hence K2 ∈ K2∗

SV1
and k2 ∈ Supp(K2∗

SV1
).

Let JK1K and JK2K be the corresponding equivalent classes in Shape2∗. Since K2 is
invariant by the symmetry with respect to the horizontal line, the distance between JK1K
and JK2K is given by

dS 2(JK1K, JK2K) = min
θ∈R

dOS 2([K1], Rθ[K2]) ,

where we denote by Rθ the rotation of angle θ in R2. We will prove the following:

Proposition 5.9. The minimum is obtained for θ = 0 and θ = π
2 , that is we have

dS 2(JK1K, JK2K) = dOS 2([K1], [K2]) = dOS 2([K1], Rπ
2
[K2]) .

This Proposition is sufficient to prove the non-uniqueness of shortest paths in Shape2∗.
Indeed, Lemma 5.5 shows that the projections of the shortest paths in OShape2∗ between
[K1] and [K2], and between [K1] and Rπ

2
[K2], are again shortest paths in Shape2∗. But

these two shortest paths are different: the first shortest path contains the point J12K1+
1
2K2K,

and this point is not on the second shortest path t 7→ J(1 − t)K1 + tRπ
2
(K2)K: 1

2K1 +
1
2K2

is not the image by a rotation of (1 − t)K1 + tRπ
2
(K2), which is equivalent to say that

1
2α

−1K + 1
2K2 is not the image by a rotation and a translation of (1− t)α−1K + tRπ

2
(K2).

See Figure 7.
Since Rπ[K2] = [K2], to compute the minimum this is sufficient to consider θ ∈ [−π

2 ,
π
2 ].

Moreover, let T be the symmetry with respect to the x axis: we have T [K1] = [K1], hence
we have

dOS 2([K1], Rθ[K2]) = dOS 2(T [K1], Rθ[K2]) = dOS 2([K1], T ◦Rθ[K2]) = dOS 2([K1], R−θ[K2]) .

This shows that in fact we need only to consider θ ∈ [0, π
2 ].
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Let kθ2 be the support function of Rθ[K2], that is kθ2(s) = k2(s− θ). We have

cosh(dOS 2([K1], Rθ[K2])) =
V2(k1, k

θ
2)√

V2(k1)V2(kθ2)
=

f(θ)

2
√
V2(k1)V2(k2)

,

where we denote by f(θ) the function defined by

f(θ) =

∫ 2π

0

(k1(s)k2(s− θ)− k′1(s)k
′
2(s− θ))ds .

Proposition 5.9 is a direct consequence of the following Lemma:

Lemma 5.10. On [0, π2 ], f attains its minimum at the points θ = 0 and θ = π
2 .

Proof. Fix θ ∈ (0, π2 ), and consider the function s 7→ k1(s)k
′
2(s − θ). This function is

piecewise C1, but is not continuous: the function k′2(s− θ) has jumps, with height 1
5 at the

points s = θ and s = π + θ, and with height 4
5 at the points s = π

2 + θ and s = 3π
2 + θ.

Hence we have

∫ 2π

0

(k1(s)k
′
2(s− θ))′ds = −1

5
k1(θ)−

1

5
k1(π + θ)− 4

5
k1(

π

2
+ θ)− 4

5
k1(

3π

2
+ θ)

= − 1

5α

√
2 cos2 θ +

1

2
sin2 θ − 4

5α

√
2 sin2 θ +

1

2
cos2 θ − 1

5
√
2α

sin θ − 4

5
√
2α

cos θ .

The equality (k1k
′
2)

′ = k′1k
′
2 + k1k

′′
2 gives −k′1k

′
2 = k1k

′′
2 − (k1k

′
2)

′, so

−
∫ 2π

0

k′1(s)k
′
2(s− θ)ds =

∫ 2π

0

(k1(s)k
′′
2 (s− θ)− (k1(s)k

′
2(s− θ))′)ds ,

and since k2(s− θ) + k′′2 (s− θ) = 0 for almost every s ∈ [0, 2π] we finally obtain

f(θ) =

∫ 2π

0

(k1(s)k2(s− θ)− k′1(s)k
′
2(s− θ))ds

=

∫ 2π

0

(k1(s)(k2(s− θ) + k′′2 (s− θ)) − (k1(s)k
′
2(s− θ))′)ds

=
1

5α

√
2 cos2 θ +

1

2
sin2 θ +

4

5α

√
2 sin2 θ +

1

2
cos2 θ +

1

5
√
2α

sin θ +
4

5
√
2α

cos θ .

We easily check that f(0) = f(π2 ) =
√
2

α (the parameters of the ellipse and the segment have
been chosen so that this property holds). And a direct computation shows that f ′(0) =

1
5
√
2α

> 0 and f ′(π2 ) = − 4
5
√
2α

< 0. Moreover, let g : [0, 1] → [0,∞) be defined by

g(u) =
1

5α

√
3

2
u+

1

2
+

4

5α

√
2− 3

2
u+

1

5
√
2α

√
1− u+

4

5
√
2α

√
u :

with the identity cos2 +sin2 = 1 we easily check that g(cos2 θ) = f(θ) for any θ ∈ [0, π
2 ].

Hence f ′(θ) = −2g′(cos2 θ) sin θ cos θ. But g is strictly concave, hence g′ has at most one
zero on [0, 1], hence f ′ has also at most one zero on (0, π

2 ). And this ends the proof: if the
minimum of f on [0, π2 ] was attained at a point θ /∈ {0, π2 }, since f ′(0) > 0 and f ′(π2 ) < 0,
f ′ would have at least 3 zeros on (0, π2 ), and that is impossible.
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5.5 Embedding of hyperbolic planes

Trivially, for any Φ ∈ O(n) we have Φ[Bn] = [Bn]. Apart from the fact that the action of
O(n) on OShapen∗ is not proper, this says that for any [K] ∈ OShapen∗,

dS n(JKK, JBnK) = dOS n([K], [Bn]) . (5.6)

From this we first deduce the following fact.

Fact 5.11 (Uniqueness of shortest paths starting from Bn). Let JKK ∈ Shapen∗. Then
there is a unique shortest path from JBnK to JKK, which is the projection of the shortest
path in OShapen∗ between [Bn] and [K].

Proof. Let δ̄ : [0, dS n(JBnK, JKK)] → Shapen∗ be an arc-length parametrized shortest path
between JBnK and JKK, and let [δ(t)] ∈ OShapen∗ be such that δ̄(t) = Jδ(t)K. Let t 7→ [γ(t)]
be the (unique) arc-length parametrized shortest path in OShapen∗ between [Bn] and [K]:
we want to show that Jδ(t)K = Jγ(t)K.

For any t ∈ [0, dS n(JBnK, JKK)], let Φt ∈ O(n) be such that

dS n(JKK, Jδ(t)K) = dOS n([K],Φt[δ(t)]) .

Since t 7→ Jδ(t)K is a geodesic in Shapen∗ we have

dOS n([Bn],Φt[δ(t)]) + dOS n(Φt[δ(t)], [K]) = dS n(JBnK, Jδ(t)K) + dS n(Jδ(t)K, JKK)

= dS n(JBnK, JKK) = dOS n([Bn], [K]) .

Hence Φt[δ(t)] is on the shortest path between [Bn] and [K] in OShapen∗. Moreover we
have dOS n([Bn],Φt[δ(t)]) = dS n(JBnK, Jδ(t)K) = t (the geodesic t 7→ Jδ(t)K is arc-length
parametrized), so Φt[δ(t)] = [γ(t)] (remember that the geodesic t 7→ [γ(t)] is also arc-length
parametrized). Finally this gives Jδ(t)K = Jγ(t)K.

In turn, we can construct totally geodesic hyperbolic surfaces in Shapen∗.

Proposition 5.12. Let JP K, JQK ∈ Shapen∗ be such that JP K, JQK and JBnK are three dif-
ferent points. Let A ∈ O(n) be such that dS n(JP K, JQK) = dOS n([P ], A[Q]). Then the
projection OShapen∗ → Shapen∗, when restricted to the (plain) geodesic triangle with ver-
tices [Bn], [P ] and A[Q], is an isometry onto its image.

Proof. Without loss of generality, we may assume that A is the identity (that is, dS n(JP K, JQK) =
dOS n([P ], [Q])). Let [K1] and [K2] be in the geodesic triangle with vertices [Bn], [P ] and
[Q]: since geodesics in OShapen∗ are convex combinations, we can write

[K1] = [α1B
n + β1P + γ1Q] and [K2] = [α2B

n + β2P + γ2Q] ,

where the αi, βi, γi are non-negative real numbers, with α1+β1+γ1 = α2+β2+γ2 = 1. We
want to prove that dS n(JK1K, JK2K) = dOS n([K1], [K2]), which means that for any Φ ∈ O(n)
we have dOS n([K1], [K2]) ≤ dOS n([K1],Φ[K2]). Since V2 is O(n)−invariant, we only need
to show that

V2(K1,K2) ≤ V2(K1,Φ(K2)) (5.7)

(K1 and K2 denote two convex bodies in the equivalent classes [K1] and [K2]). We have

V2(K1,K2) = α1α2V2(B
n) + α1β2V2(B

n, P ) + α1γ2V2(B
n, Q)

+β1α2V2(P,B
n) + β1β2V2(P ) + β1γ2V2(P,Q)

+γ1α2V2(Q,Bn) + γ1β2V2(Q,P ) + γ1γ2V2(Q) .
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Moreover Φ(K2) = α2B
n + β2Φ(P ) + γ2Φ(Q), hence

V2(K1,Φ(K2)) = α1α2V2(B
n) + α1β2V2(B

n,Φ(P )) + α1γ2V2(B
n,Φ(Q))

+β1α2V2(P,B
n) + β1β2V2(P,Φ(P )) + β1γ2V2(P,Φ(Q))

+γ1α2V2(Q,Bn) + γ1β2V2(Q,Φ(P )) + γ1γ2V2(Q,Φ(Q)) .

And we obviously have V2(B
n, P ) = V2(B

n,Φ(P )) and V2(B
n, Q) = V2(B

n,Φ(Q)). More-
over, the Alexandrov–Fenchel inequality (1.6) gives V2(P ) =

√
V2(P )V2(Φ(P )) ≤ V2(P,Φ(P )),

and V2(Q) =
√
V2(Q)V2(Φ(Q)) ≤ V2(Q,Φ(Q)). And dS n(JP K, JQK) = dOS n([P ], [Q]) gives

V2(P,Q) ≤ V2(P,Φ(Q)) and V2(Q,P ) ≤ V2(Q,Φ(P )). Since all the real numbers αi, βi, γi
are non-negative, this gives inequality (5.7).

5.6 Proof of Theorem 3

Proposition 5.8 and sections 5.4 and 5.5 give part of Theorem 3. It remains to prove the
assertion about the boundary of Shapen∗. It obviously contains only one point: indeed, the
boundary of OShapen∗ is the set of segments up to translations and homotheties, so the
boundary of Shapen∗ is the set of segments, up to translations, homotheties and isometries
of Rn, and there is only one equivalence class.

5.7 Metrics of non-negative curvature on the sphere S2

Let M≥0(S
2)1 be the set of metrics of non-negative curvature on the sphere in the sense of

Alexandrov, up to isometries, and with unit area. Let K be a convex body in R3. Then the
induced inner distance on the boundary of K (i.e. the infimum of the length of curves on
the boundary between the two points) is isometric to a metric of non-negative curvature on
S2 [2], [10, Theorem 10.2.6]. This gives a well defined map

I : K3∗
SV2

→ M≥0(S
2)1 ,

where we denote by K3∗
SV2

the space of convex bodies in R3, not reduced to points or segments,
with Steiner point at the origin and intrinsic area V2 equals to one. Remember that the
total surface area is two times the intrinsic area, so that for K ∈ K3∗

SV2
, I(K) is a homothety

of factor 2−1/2 of the induced inner distance on the boundary of K. We have the following
classical result, see [1], as well as [8] for an alternative proof.

Theorem 5.13 (Alexandrov). For any metric m of non-negative curvature on the sphere,
there exists a convex body K in R3 such that the induced inner distance on the boundary of
K is isometric to m.

Of course, the induced inner distance does not change if an isometry of the ambient
Euclidean space is performed on K. In particular, a translation can be performed on K,
such that its Steiner point becomes the origin. Hence Theorem 5.13 implies the following.

Corollary 5.14. The map I is surjective.

Later Pogorelov proved that convex bodies in R3 are uniquely determined, up to global
isometries, by the induced inner distance on their boundary. See [31], as well as [38] for a
stronger result.

Theorem 5.15 (Pogorelov). Let K1 and K2 in K3∗
SV2

such that I(K1) = I(K2). Then K1

and K2 differ by an element of O(3).
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Note that Supp(K3∗
SV2

) ⊂ H∞
3 . By Corollary 3.7 and Corollary 4.19, one obtains the

following.

Lemma 5.16. On Supp(K3∗
SV2

), dH and d∞ induce the same topology.

Let dSV2
be the distance on K3∗

SV2
defined as the pullback of dH by the map Supp : K3∗

SV2
→

Supp(K3∗
SV2

). By construction of the metrics, this is also the pullback of the distance dOS 3 by
the projection map K3∗

SV2
→ OShape3∗. By Remark 4.7, the lemma above can be rephrased

as follows.

Lemma 5.17. On K3∗
SV2

, dSV2
and the Hausdorff distance induce the same topology.

Also, the space M≥0(S
2)1 is endowed with a natural topology, which is the one of uniform

convergence of metric spaces [10, 7.1.5] (which is actually, in this very particular case, the
Gromov–Hausdorff topology, [10, Exercise 7.5.14]).

Lemma 5.18. The map I is continuous for the topology given by dSV2
on K3∗

SV2
, and the

topology of the uniform convergence on M≥0(S
2)1.

Proof. By [10, Lemma 10.2.7], I is continuous when K3∗
SV2

is endowed with the Hausdorff
topology. Hence Lemma 5.17 proves the claim.

Let p : K3∗
SV2

→ Shape3∗ be the map which associates to any element of K3∗
SV2

its class
in Shape3∗. We have p = p2 ◦ p1, where p1 and p2 are the following projections:

(K3∗
SV2

, dSV2
)

p1−→ (OShape3∗, dOS 3)
p2−→ (Shape3∗, dS 3) .

The projection p is continuous: indeed, p1 is continuous because dSV2
is the pullback of

dOS 3 by the map p1, and p2 is continuous since the topology on Shape3∗ is the quotient
topology (Lemma 5.3).

Let us define the map Ī by the following commutative diagram

K3∗
SV2

M≥0(S
2)1

Shape3∗

p

I

Ī

By Corollary 5.14 and Theorem 5.15, Ī is well-defined and bijective.

Lemma 5.19. The map Ī is a homeomorphism.

Proof. As I is continuous and as the topology on Shape3∗ is the quotient topology (Lemma 5.3),
Ī is continuous. Let us check that Ī−1 is continuous. This is sufficient to show that for
every sequence (mj) of M≥0(S

2)1 converging to m ∈ M≥0(S
2)1, there exists a subsequence

(mjk ) such that (Ī−1(mjk)) converges to Ī−1(m).
Let (mj) be a sequence of M≥0(S

2)1 converging to m ∈ M≥0(S
2)1 for the uniform

topology, and let JKjK = Ī−1(mj). Let us choose representatives Kj of JKjK in K3∗
SV2

. In
particular, I(Kj) = mj , and the convergence of the mj implies that the diameters of the
∂Kj are uniformly bounded [10, 7.3.14]. In turn, the Euclidean distances between points
on ∂Kj ⊂ R3 are uniformly bounded. As the Steiner points of the Kj are at the origin,
the Kj are contained in a ball. By the Blaschke selection theorem (Theorem 4.15), there is
a converging subsequence Kjk for the Hausdorff topology, hence for dSV2

by Lemma 5.17;
we set K = limKjk ∈ K3∗

SV2
. Since p is continuous, JKjkK converges to JKK. As Ī is

continuous, mjk = Ī(JKjkK) converges to Ī(JKK), so m = Ī(JKK). Finally this gives that
Ī−1(mjk) = JKjkK converges to Ī−1(m) = JKK.
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More informations about the topology of M≥0(S
2)1 may be found in [4]. For n ≥ 3, the

induced inner distance on the boundary of a convex body in Rn is (isometric to) a metric of
non-negative curvature on Sn−1 in the sense of Alexandrov. But not every such metric on
Sn−1 arises in this way ([21], [1, 1.9]).

6 The space of all the (oriented) shapes

This section is an opening to the study of spaces of convex bodies, considered without
making distinction between dimensions.

For p ≥ 0 let us denote by ιn,p the canonical isometric embedding of Rn into Rn+p which
is given by Rn ≃ Rn × {0}p ⊂ Rn+p.

Fact 6.1. The map

ιn,p : (OShapen∗, dOS n) → (OShape(n+p)∗, dOS n+p)

defined by ιn,p([K]) = [ιn,p(K)] is an isometry.

Proof. Let K1 and K2 be convex bodies in Rn of unit intrinsic area. By property A6) of
the intrinsic area, ιn,p(K1) and ιn,p(K2) have also unit intrinsic area. So it suffices to check
that V2(K1,K2) = V2(ιn,p(K1), ιn,p(K2)), that is clear from 1.5 and A6).

Let OShape∞∗ be the union over n of OShapen∗, quotiented by the following equivalence
relation: [K1] is equivalent to [K2] if and only if there exist i, j ≤ p such that K1 ⊂ Ri,
K2 ⊂ Rj and [ιi,p−i(K1)] = [ιj,p−j(K2)]. We will denote by [K]∞ an element of OShape∞∗.
For two representatives of [K1]∞, [K2]∞ ∈ OShape∞∗ in Rn, let us define

dOS ∞([K1]∞, [K2]∞) = dOS n([K1], [K2]) .

It is easy to see that dOS ∞ is well-defined and that it is actually a distance on OShape∞∗.
The isometric embeddings ιn,p induce isometric maps from (Shapen∗, dS n) to (Shape(n+p)∗, dS n+p),

so in the same way we can define the set Shape∞∗ and the metric space (Shape∞∗, dS ∞).
It follows from Theorems 1 and 3 that (OShape∞∗, dOS ∞) and (Shape∞∗, dS ∞) are

geodesic metric spaces. But it may happen that a sequence of convex bodies with non-
empty interior in Rp converges to a convex body in OShape∞ when p goes to infinity, see
below. This suggests that there may exist other shortest paths than the ones we know, and
in consequence we don’t know if those metric spaces have bounded curvature.

Fact 6.2. Let K ∈ Kn∗. Let (ǫp)p be a sequence of real numbers such that
√
pǫp → 0. Then

the sequence ([ιn,p(K) + ǫpB
n+p]∞)p converges in OShape∞∗ to [K]∞.

Proof. We have dOS ∞([K]∞, [ιn,p(K)+ǫpB
n+p]∞) = dOS n+p([ιn,p(K)], [ιn,p(K)+ǫpB

n+p]),
so

cosh(dOS ∞([K]∞, [ιn,p(K) + ǫpB
n+p]∞)) =

V2(ιn,p(K), ιn,p(K) + ǫpB
n+p)√

V2(ιn,p(K))V2(ιn,p(K) + ǫkBn+p)
.

We have V2(ιn,p(K)) = V2(K), and equations (1.2) and (1.7) give

V2(ιn,p(K), ιn,p(K)+ǫpB
n+p) = V2(ιn,p(K))+ǫpV2(ιn,p(K), Bn+p) = V2(K)+

ǫp
2
V1(B

n+p−1)V1(K)

and

V2(ιn,p(K) + ǫpB
n+p) = V2(ιn,p(K)) + 2ǫpV2(ιn,p(K), Bn+p) + ǫ2pV2(B

n+p)

= V2(K) + ǫpV1(B
n+p−1)V1(K) + ǫ2p(n+ p− 1)π .

40



Equation (1.3) gives V1(B
n+p−1) ∼

√
2π(n+ p− 1), so V2(ιn,p(K), ιn,p(K) + ǫpB

n+p) →
V2(K) and V2(ιn,p(K)+ǫpB

n+p) → V2(K), and this gives dOS ∞([K]∞, [ιn,p(K)+ǫpB
n+p]∞) →

0.

We show in the next proposition that the spaces (OShape∞∗, dOS ∞) and (Shape∞∗, dS ∞)
are not complete, hence not proper.

Proposition 6.3. The space (OShape∞∗, dOS ∞) (resp. (Shape∞∗, dS ∞)) is not complete:
the sequence of balls ([Bn]∞)n (resp. (JBnK∞)n) is a diverging Cauchy sequence.

Proof. Let p ≤ n. Since the balls are invariant under isometries we have

dOS ∞([Bp]∞, [Bn]∞) = dS ∞(JBpK∞, JBnK∞) = dOS n([ιp,n−p(B
p)], [Bn]) ,

and by equations (1.2), (1.3) and (1.9) we have

cosh(dOS n([ιp,n−p(B
p)], [Bn])) =

(√
(n− 1)Wn−1√
(p− 1)Wp−1

)
.

Since Wn ∼
√

π
2n , the sequence of balls (either in OShape∞∗ or Shape∞∗) are Cauchy

sequences.
Moreover, suppose that ([Bn]∞)n or (JBnK∞)n converges to [K]∞ or JKK∞ in OShape∞∗

or Shape∞∗. Since we have dOS ∞([K]∞, [Bn]∞) = dS ∞(JKK∞, JBnK∞), in any of these two
cases we have that ([Bn]∞)n converges to [K]∞ in OShape∞∗. And that is impossible.

Indeed, assume that K is a convex body of some Euclidean space Rp. As Bn is invariant
under the action of O(n), then for any Φ ∈ O(p), by considering O(p) as a subgroup of
O(n), we have that ([Bn]∞)n converges to Φ[K]∞. So K must be a ball, but from the
computations above, ([Bn]∞)n cannot converge to the class of a ball.

It would be interesting to explore more intensively the metric spaces (OShape∞∗, dOS ∞)
and (Shape∞∗, dS ∞), that is out of the scope of the present paper. The description of
the completion of those spaces would certainly involve the study of “infinite dimensional
convex bodies”, as in [20, 13, 36, 37]. Note that in the case of (OShape∞∗, dOS ∞), it would
be relevant to describe the space “H∞

∞” (that is, the inductive limit of the H∞
n ), and its

completion.
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